Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Trong các khẳng định sau, khẳng định nào sai? A Nếu F(x),G(x) là hai nguyên hàm của hàm số f (x) thì F(x)[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 2. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 3. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 4. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 5. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Câu 6. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
A 2
√
3, 4
√
3, 38 B 2, 4, 8 C 8, 16, 32 D 6, 12, 24.
Câu 7. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 8. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 9. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
√ 3
Câu 10 Hình nào trong các hình sau đây không là khối đa diện?
Câu 11. Khối đa diện đều loại {3; 4} có số mặt
Câu 12. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Trang 2Câu 13. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 14. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 15. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 16. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 17. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 18. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
Câu 19. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√ 3
2√
3√ 3
24 .
Câu 20. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
8a3√ 3
4a3√ 3
8a3√ 3
9 .
Câu 22. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 23. [1] Giá trị của biểu thức 9log3 12bằng
Câu 24. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 25. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
2 .
Câu 26. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 27. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.
Trang 3Câu 28. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3√
3
2a3
√ 3
4a3
2a3
3 .
Câu 29. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
6 .
Câu 30. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A. 9
13
23
5
16.
Câu 31. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
Câu 32. Tính lim
x→2
x+ 2
x bằng?
Câu 33. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là −1 B Phần thực là −1, phần ảo là 4.
C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là 1.
Câu 34. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
(1, 12)3− 1 triệu.
C m = 100.1, 03
(1, 01)3− 1 triệu.
Câu 35. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.
Câu 36. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 37. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 38. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
a3
2a3√ 3
4a3√ 3
3 .
Câu 39. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a
3a√58
3a√38
29 .
Trang 4Câu 40. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 41. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 4a
3√
6
a3√ 6
2a3√ 6
3√ 6
Câu 42. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 43. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 44. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 45. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 46. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
9
3
Câu 47 Phát biểu nào sau đây là sai?
A lim 1
n = 0
C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)
Câu 48. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 49. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11+ 19
9 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 2
√
11 − 3
Câu 50. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 51. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 52. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 53. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 54. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Trang 5Câu 55. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
A −3 − 4
√
√ 2
Câu 56. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = 4 + 2
e. C T = e + 3 D T = e + 2
e.
Câu 57. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 58. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 59. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 4 ln 2x 2x3ln 10 .
Câu 60. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey
− 1 C xy0 = −ey+ 1 D xy0 = ey
− 1
Câu 61. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 62. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 64. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e 4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 65. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a√57
√
√ 57
17 .
Câu 66 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Nhị thập diện đều C Tứ diện đều D Bát diện đều.
Câu 67. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
3√
3√ 2
12 .
Câu 68 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Trang 6Câu 69. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 70. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 1; m = 1
C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1
Câu 71 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D.
Z
f(x)dx
!0
= f (x)
Câu 72. [1] Tính lim1 − 2n
3n+ 1 bằng?
A −2
1
2
Câu 73. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 74. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {0} C. D = R D. D = R \ {1}
Câu 75 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 76. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 77. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 78. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 5
3
Câu 79. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 7Câu 80. Khối đa diện đều loại {3; 3} có số cạnh
Câu 81. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 82. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 83. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.
Câu 84. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 85. [1] Đạo hàm của làm số y = log x là
A y0 = 1
0 = ln 10
0 = 1
xln 10. D.
1
10 ln x.
Câu 86. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 87. Tứ diện đều thuộc loại
Câu 88. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 89. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
C Câu (II) sai D Câu (III) sai.
Câu 90. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 91. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1 D f0(0)= 1
ln 10.
Câu 92. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Trang 8Câu 93. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 94. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2016
2017
4035
Câu 95. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 96. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 97. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 98. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 99. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 100. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 101. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 D m > −5
4.
Câu 102. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 103. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√ 17
√ 5
Câu 104. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 3n
n2 D un = n2− 2
5n − 3n2
Câu 105. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 106. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Trang 9Câu 107. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 108. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A. 2
5.
Câu 109. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 110. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 111. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 112. Tính lim
x→1
x3− 1
x −1
Câu 113. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√ 2
Câu 114. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 115. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (−∞; 1) C. D = (1; +∞) D. D = R
Câu 116. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 < m < −1 B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D (−∞; −2)∪(−1; +∞) Câu 117. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 118 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Trang 10Câu 119. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 120. Bát diện đều thuộc loại
Câu 121. [3-1214d] Cho hàm số y= x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A.
√
√
Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 6
a3√ 2
a3√ 3
24 .
Câu 123 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
Câu 124. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. C log2a= 1
log2a. D log2a= loga2
Câu 125. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 126. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 127. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 18 lần C Tăng gấp 9 lần D Tăng gấp 27 lần.
Câu 128. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Hai khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 129. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1
1
e2
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
HẾT