1. Trang chủ
  2. » Giáo án - Bài giảng

photocatalytic properties of hierarchical zno flowers synthesized by a

5 281 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 727,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Photocatalytic activity was evaluated using the degradationof organic dyemethylorange.The sucroseaddedZnO flowers showed improved activity, whichwas mainlyattributedtothebetter crystallin

Trang 1

jo u rn a l h om epa g e :w w w e l s e v i e r c o m / l o ca t e / a p s u s c

Photocatalytic properties of hierarchical ZnO flowers synthesized by a

a Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China

b Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080, PR China

c Department of Physics, Northeast Forestry University, Harbin 150040, PR China

a r t i c l e i n f o

Article history:

Received 6 November 2011

Received in revised form 4 April 2012

Accepted 5 April 2012

Available online 24 July 2012

Keywords:

ZnO flowers

Photocatalytic properties

Hydrothermal method

Sucrose

a b s t r a c t

In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrother-mal method.The thermogravimetric analysis/differential thermal analysis (TGA–DTA) and Fourier transform infraredspectra (FTIR)showedthatsucroseactedasacomplexing agentinthe synthe-sis processand assistedcombustion duringannealing Photocatalytic activity was evaluated using the degradationof organic dyemethylorange.The sucroseaddedZnO flowers showed improved activity, whichwas mainlyattributedtothebetter crystallinityasconfirmedbyX-ray photoelec-tronspectroscopy(XPS)analysis.Theeffectofsucroseamount onphotocatalyticactivity wasalso studied

© 2012 Elsevier B.V All rights reserved

Inthelastdecade,zincoxide(ZnO)nanostructureshavearoused

tremendous attention due to its distinguished performance in

piezoelectric systems,optoelectronics, photovoltaicenergy

con-version,photocatalyticdecompositionoforganicpollutantsandas

chemicalsensingelements.Also,ithasbeenfoundthatthose

prop-ertiescanbeimprovedwithspecialmorphologies,shapes,sizes

andcrystallinityofZnOnanostructures[1–6].Thus,thedesigned

andcontrollablefabricationsofZnOwithspecificmorphologiesand

structureshavebeenexploredtogainsuperiorpropertiesinrecent

years[7–10]

Three-dimensionalhierarchicalZnOexhibitedexcellentoptical

andcatalyticproperties.Primaryroutesforthree-dimensional

hier-archicalZnOsynthesisincludevapor–liquid–solid(VLS)growthat

relativelyhightemperature,electrochemicalandsolution-based

methodsforself-assemblyofhierarchicalZnO[11,12].Amongthese

synthesismethods,thehydrothermalmethodisasimple,facileand

∗ Corresponding author at: Key Laboratory of Semiconducter Nanocomposite

Materials, Ministry of Education Department of Physics, School of Physics and

Elec-tronic Engineering, Harbin Normal University, Harbin 150025, PR China.

Tel.: +86 451 88060526; fax: +86 451 88060629.

∗∗ Corresponding author Tel.: +86 451 88060526; fax: +86 451 88060629.

E-mail addresses: xulingling hit@163.com (L Xu), zhaoyan516@126.com

(Y Zhao).

controllablewaytoobtainlargeyieldswithuniquemorphology ZnO canbeusedasa kindof photocatalyst,whichdecomposes organicpollutantswithultra-violetlightexcitation[2,4,13].The hierarchicalstructuresincreasedtheefficiencyofoptical absorp-tionandenhancedthephotocatalyticactivity.Tosynthesizethe hierarchical mesoporous ZnO, the multi-layeredbasic zinc car-bonate (LBZC) was reported to be used as a precursor in the ureaprecipitationorhydrothermalmethod[14,19].Severalreports aboutthefabricationofLBZChaveconcernedabouttheeffectsof surfactants

In the past decade, kinds of morphologies of ZnO can

be synthesized with different surfactant, like cetyltricetyl-trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol (PEG) and so on [21,4,22,23] Usu-ally,theenvironmentally-friendly,low-costandeasily-obtainable sucroseisusedasfuelinthecombustionsynthesisprocedurefor ceramicmaterialfabrication[5,6,15–17].Also,itisreportedthat sucrose can play the role of chealtingagent after the hydroly-sation inacidsolution.Inthis work,sucrosewasintroducedin the urea hydrothermal procedure tofabricate hierarchical ZnO flowers as a chelating agent and fuel The annealing process

of sucrose added precursor wasperformed and moreheat and gases were released, resulting in the good crystallization and largereaction areas in ZnO flowers.Thephotocatalytic proper-tiesofZnOflowersdependentonthesucrosecontentwerealso discussed

0169-4332/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

2 Experimental

2.1 PreparationofZnOflowers

Allthechemicalswereanalyticalgradereagentsandwereused

withoutfurtherpurification.Firstly,0.002Mzincnitratesolution

waspreparedbydissolvingproperZn(NO3)2indeionizedwater.In

atypicalprocedure,0.006molureapowderwasaddedinto20mL

0.002MZn(NO3)2solutionwithvariablequantityofsucrose.After

acontinuousstirringfor15min,themixedsolutionwastransferred

intoa50mLTeflonbottleheldinastainlesssteelautoclave,which

waskeptat90◦Cfor2h.Thewhiteprecursorwaswashedfor

sev-eraltimeswithdeionizedwaterfollowedbydryinginairat75◦Cfor

12h.Furtherheat-treatedwascarriedouttoobtainthefinalZnOat

300◦Cfor2h.Thesampleswith0.08gand0gsucroseaddedwere

labeledasP0andS0.Inordertoassesstherelationshipbetween

theamountofsucroseandthephotocatalyticactivityofZnO,

vari-ableamountofsucroseaddedsampleswerepreparedthroughthe

similarprocess,labeledasP−2,P−1,P1andP2for0.04g,0.06g,0.1g

and0.25g,respectively

2.2 Characterization

Thethermaldecompositionprocessoftheprecursorswas

inves-tigatedbythermogravimetricanalysis/differentialthermalanalysis

(TGA–DTA)usingaTASDT2960instrument.Itwasperformedinair

from40to1000◦Cwithaheatingrateandflowrateof10◦Cmin−1

and 100mLmin−1,respectively PowderX-raydiffraction(XRD)

analysiswascarriedoutbyaRigakuD/Max-2550/pc

diffractome-terusingCu-K␣radiation.TheIRspectraofsucroseandsamples

before/after heat treatmentwere determined by Fourier

trans-forminfraredspectroscopy(FTIR,BrukerIFS66v/s)usingKBrdisc

method.TheratioofKBrtosampleswasabout300:1inweight

ThemorphologiesofZnOflowersobtainedwithvarioussucrose

amountswererevealedbyascanningelectronmicroscope(SEM,

HitachiS-4800).X-rayphotoelectronspectroscopy(XPS)

experi-mentsweremeasuredwithaK-Alpha (ThermofisherScienticfic

Company)X-rayphotoelectronspectrometerusingAlK␣radiation

(12kV,6mA).Thebindingenergiesofelementswerecalibratedby

takingcarbonC1s(285.06eV)asreference

2.3 Photocatalyticactivitiestests

Inthiswork,thephotocatalyticactivitiesofhierarchical

struc-turesZnOweretestedbyusingmethylorange(MO)asthemodel

pollutant.0.02gsamplewasaddedinto50mL,1.2×10−5MMO

solutionandmechanicallystirredindarkfor20mintoachievethe

adsorptionequilibriumofMOwithZnObeforetheUVirradiation

Inacoolwaterbath,themixturewasirradiatedbytwoUVlamps

(Philips,8W)withcontinuousstirring.Thesamplesweretakenout

fromthemixedsuspensionatevery20mintocheckthechangesof

MOconcentration.ToremovethecatalystsofZnO,centrifugation

wascarriedoutat10,000rpmfor10min.TheUV–visabsorption

spectraofthecentrifugedsolutionsweremeasuredontheHITACHI

UV/visspectrometer(U-3010)

Toinvestigatetheappropriatecalcinationstemperatureforthe

transformationoftheprecursortoZnO,thethermalanalysisinair

atmosphere wasconducted.TypicalTGA/DTA plotsfor the

pre-cursorofsampleP0isshowninFig.1.Atthebeginning,asmall

endothermicpeakwith5.4%weightlosscanbeobserved,which

ismainlyattributedtotheevaporationofwaterintheprecursors

Inthetemperaturerangeof100–400◦C,anobviousendothermic

Fig 1. TGA–DTA curves of the precursor of P 0

Fig 2.XRD patterns of the samples: (a) the precursor of P 0 , (b) P 0

peakscenteredat259.3◦CcanbefoundinDTAcurve Simultane-ously,afasterweightlossstage,claimedas25.8%canbeobservedin TGAcurve.Thethermaldecompositionprocessescanbeascribedto thedecompositionandoxidationoftheprecursorbythereleasing

ofwaterandcarbondioxide.Therefore,theannealingtemperature waschosenat300◦Ctoobtainthefinalproducts

ThepurityandcrystallinephaseofP0 andtheprecursorofP0 weredeterminedbyXRD.Fig.2(a)showedtheXRDpatternsof theprecursor.Asacomparison,theXRDpatternofZnOproduct (P0)aftercalcinationwasalsopresented(Fig.2(b)).Thediffraction peaksinFig.2(a)canbeidentifiedastheZn4(CO3)(OH)6H2O,which wasconsistentwithJCPDSCardNo.11-0287.While,thediffraction peaksofP0 canbeidentifiedaspurehexagonalZnO(JCPDSCard

No.36-1451).TheXRDpatternsofP0andtheprecursorare con-sistentwithourpreviousresultswithnosucroseaddedsynthesis procedure[19].Itshowsthatthesucroseascomplexingagentwill notinfluencetheformationoftheprecursor(Zn4(CO3)(OH)6H2O) andthefinalproductZnO

Inthesynthesisprocess,sucrosewasintroducedintotheurea hydrothermalprocedure Toclarifytherole ofsucroseactingin thecrystalgrowth,FTIRspectraweremeasuredtoverifythe possi-bleintermediateby-productsandtheresultswereshowninFig.3

Wefoundthatsucroseplayedtherolesofcomplexingagentand fuelinthesynthesisprocess.Inacidicsolution,thesucrosefirstly hydrolyzesintoglucoseandfructose,whichcanbefurtheroxidized intosaccharicacid,glycolicacidandtrihydroxy-butyricacidwitha largenumberof–COOHand–OHgroups.Furthermore,the COOH groupscaneasilycombinewithmetalionsinthesolution,which

isquitesimilartothecitricacidcomplexingmechanisms

Trang 3

Fig 3.FTIR spectra of samples (a) sucrose (b) the precursor of P 0 (c) calcined at

300 ◦ C (P 0 ).

Fig.3(a)shows theFTIR spectrumof sucrose andits typical

absorptionsareinagreementwiththespectrumindatabase[18]

Itisworthnoticingthatnoobviousabsorptionispresentbetween

1500cm−1and2500cm−1.While,thespectrumfortheprecursor

ofP0showninFig.3(b)clearlyshowsthecoordinated COO−

sym-metricstretchingwithbroadabsorptionaround1618cm−1,which

comesfromtheproductsofthesucrosehydrolyzation[20]

Consid-eringthecomplexingabilitymentionedabove,itcanbeidentified

thatthemetalionsarewellcomplexedbythe COOHgroups,

form-ingstable COOZn2+.Andinfact,noprecipitationwasobserved

duringthestirring.Moreover,thebroadabsorptionbandcentered

at3400cm−1canbeobservedduetothe OHstretchingvibration,

whichcanbeattributedtotheexistenceofcrystallizationwater

intheprecursor.Theabsorptionbandaround1385cm−1 is typ-icalasymmetricstretchingvibrationofNO3 −,whichcomesfrom

therawmaterialZn(NO3)2.Aftercalcinationat300◦C(Fig.3c),the chelatingcomplexesdecomposedandamassofgasesare gener-ated,whicharefavoredfortheformationofporousproduct.As curve(b)showed,ininfraredabsorptionspectraoftheprecursor, theabsorptionpeakat1048cm−1,830cm−1,711cm−1areascribed

toCO3 −latticevibrationinducedinfraredabsorption.Therefore,

the FTIR shows theprecursor is theZn4(CO3)(OH)6H2O,which

isconsistentwiththeXRDresults.Afterannealingat300◦C,the infraredabsorptionspectra(Fig.3(c))showsthatanewabsorption peakcenteredat474cm−1appears,indicatingtheformationofZnO andthecompletedecompositionoftheprecursors

Fig.4(a)showsthetypicalSEMimagesoftheproductsafter annealingat300◦C.Obviously,thehierarchicalstructurewas con-structedbylargequantitiesoffluffynanosheeteswithauniform sizedistributionofmicro-flowers.TheenlargeviewoftheP0in

Fig.4(b)showsthatthediameterofZnOflowersisabout10␮m The nanosheets petals are narrow in width and ended with a sharptip.Theabundanceofpetalswillgreatlyincreasethe con-tactareabetweenthecatalystsandorganicdyes.Moreover,thegap formedbytheadjacentnanosheetswouldenhancetheabsorption

ofexcitinglightandpromotethephotocatalyticactivitiesofZnO Theopticalabsorptionefficiencyincreasedbythediffuse reflec-tionhappensamongthepetals,asshownintheinsertedfigureof

Fig.4(b).Ontheotherhand,themicrostructureofthenanosheets petalsalsoshowsdifferencesbetweensucroseaddingsampleP0

andnosucroseaddingoneS0.ThehighmagnificationSEMimages

ofpetalsfromS0andP0wereshowninFig.4(c,d).Apparently,the poresonthenanosheetsarequitedistinguishedfromeachother Themicrostructureof S0 presentsthattheporesareembedded

inthepetals,likelargenumberofholesonaflatsurface.While, forthesucroseaddedsampleP0,theporeswereformedbythe

Fig 4.SEM images (a) Flower-like ZnO of P 0 (b) An enlarge view of P 0 The inserted shows the abridged general view of the possible light absorption in the sample P 0 (c)

Trang 4

Fig 5.Photodegradation of MO in the solution with S 0 and P 0 ZnO flowers.

connectionofagreatquantitiesofZnOnanoparticlespresenting

largersurfaceareascompared withS0.In fact,thereisno

obvi-ousdifferenceintheflowerlikestatusbetweentheprecursorsof

P0andS0,indicatingthatthesucroseeffectsonthemorphology

ofLBZC(Zn4(CO3)(OH)6H2O)isnotobvious.However,togainthe

finalZnOhierarchicalstructures,annealingprocesswascarriedout

andtheroleofsucrosewasactivatedduringthedecompositionof

LBZC.Intheprocessofsynthesis,thesucrosehydrolyzesintotwo

kindsofmonosaccharides,glucoseandfructosethatis

homodis-perseintheZn4(CO3)(OH)6H2Oandassistcombustionduringthe

annealing.Consideringthesucrosecanbeusedasfuelinthe

fab-ricationofoxides,thehightemperaturedecompositionprocessof

LBZCwithsucroseaddingcanbetreatedasamoreintensiveand

rapidcombustion,leadingtotheprecursorburningmuch more

sufficientlyandthecrystallinityofZnOparticlesimproved.Good

crystallinequalitycanbereflectedfromthemicrostructureof

sam-ples.Sphericalnanoparticlesconstitutingtheresultantnanosheets

wereformedbytheadditionalheatingfromtheaddedsucrose,

whichwouldbebeneficialtothephotocatalyticactivity.Toevaluate

thesucroseeffectsonthephotocatalyticactivity,theperformances

ofS0andP0wereinvestigatedbythedegradationofMOdyeunder

UVirradiation.Fig.5comparesthephotodegradationofMOasa

functionofirradiationtimefortheP0andS0samples.Asclearly

shown,afterirradiationfor100min,thephotocatalyticdegradation

ofMOonS0is80%.Infact,wehavediscussedthesuperior

photocat-alyticpropertiesofthemulti-layeredmesoporousZnOstructures

(S0)decomposingtheMO,whichshowedthesuperior

photocat-alyticactivitytothecommercialZnO19.Surprisingly,incomparison

withtheS0,asmallamountofsucroseaddingsampleP0displayed

muchhigherdecompositionefficiencywithadegradationrateof

nealy100%afterirradiationfor80min.Consideringthedifferences

inthesynthesizedprocedure,sucroseaddingplaysanimportant

roleinimprovingthephotocatalyticproperties

ThesurfacesensitivediagnostictestXPSwasconductedto

elu-cidatetheoxidationstatesofS0 andP0.Fig.6demonstratesthe

high-resolutionXPSspectraofO1sstatesofsampleS0andP0

Obvi-ously,theXPSspectraofO1speaksisasymmetricandbroadening,

whichcanberesolvedintotwopeaksbyaGaussiandistribution

fittingcenteredat530.1±0.2eVand531.7±0.2eV,respectively

Thefittingindicatesthatatleasttwooxygenspeciesarepresentin

thenear-surfaceregion

OAsignalpeaksarecenteredat530.1±0.2eVisduetooxygenin

thewurtzitestructureofZnO(latticeoxygen),andtheintensityof

thispeakisameasureoffullyoxidizedoxygenatoms[24].O signal

(a) S0

Bindin g Energ y (e V)

O1s Scan B O1s Scan A

(b) P0

Binding En ergy (eV)

O1s Scan A

O1s Scan B

Fig 6.The high-resolution XPS spectra of O1s states of sample S 0 (a) and P 0 (b).

peaksat531.7±0.2eVcorrespondstotheadsorbedoxygen,which

isascribedtothepresenceofadsorbedoxygen,includinghydroxyl andcarbonategroupsadsorbedonthematerialsurface.[25–28]The integratedintensityofpeakOAcanbecomparedwiththatofpeak

OBusingtheOA toOB integratedintensityratio“X,”whichwas approximately2.0and1.7forP0andS0,respectively.Apparently, thelatticeoxygeninthesucroseaddedsampleP0ishigherthan thatofsampleS0.Thisresultalsoindicatesthatthecrystallinityof

P0issuperiortoS0duetotheaddedsucroseprovidingwithmore energyduringannealing.Under theUVexcitation,electron-hole pairscarriedoutredoxreactionandmoresurfacedefectswillbe companiedwithhighercombinationprobabilityofsurfacestates andhole.However,thehighcrystallinitywoulddecreasesurface defectsandthecombinationprobabilityofsurfacestatesandholes thatcanenhancephotocatalyticactivity.[5,6]Consideringthe pho-tocatalyticactivityofP0 andS0,thesucroseinducedcrystallinity improvementisaneffectivetreatmenttoincreasethe photoactiv-ityofZnOphotocatalysts.Inordertofindtherelationshipbetween theamountofsucroseandthephotocatalyticactivityofZnO, vari-ableamountofsucroseaddedsampleswerepreparedthroughthe similarprocess.Fig.7showstheplotofthedecolorization efficien-ciesofMObytheZnOwithvariablesucroseafter40minreaction time.It canbeseenthatnosucroseaddedZnO S0 shownearly 60%decolorizationefficiency.Withthesucroseadded,ZnOsamples showedmuchbetterphotocatalyticactivityandthedecolorization efficienciesweregreatlyincreased.AsshowninFig.7,P0showsthe superiorphotocatalyticactivityanddecolorizationefficiencywas achieved95%.While,otherZnOsamplewithfewerormoresucrose

Trang 5

Fig 7.Photocatativity comparison of ZnO flowers after MO degradation for 40 min.

The sucrose contents of S 0 , P−2, P−1, P 0 , P 1 , P 2 were 0 g, 0.04 g, 0.06 g 0.08 g 0.1 g and

0.25 g, respectively.

addedshowlowerdecolorizationefficienciesduringthesame

reac-tiontime.Sincethesmallamountofsucroseaddedcanresultin

negligibleeffectsonthemorphology,thecrystallinityand

agglom-erationofphotocatalystsshouldbeconsidered.Insomecases,it

wasfoundthattheheatgeneratedduringthereactioncouldbe

moreprominenttocausesinteringoragglomerationofparticles,

resultingin graingrowthand lowphotocatalytic reactionsites

Therefore,theoptimizationofreactionconditionwasestablished

for0.08gsucroseaddedZnOflowers

Inthisstudy,hierarchicalstructuresZnOwassuccessfully

syn-thesized via a sucrose added urea hydrothermal method The

preparedZnOflowerswerecharacterizedbyTG-DTA,FTIR,XRD

andSEM.ThephotocatalyticactivitiesofZnOflowerswere

evalu-atedbythedegradationofMOandresultsshowthatthesucrose

addedsamplepresentssuperiordecolorizationefficiency.TheXPS

analysis reflected that the adding of sucrose can improve the

crystallizationofZnO TheZnO flowerssynthesizedviavariable

sucroseamountwerealso estimatedbythedecolorization

effi-ciencyofMOafter40minreactiontime.Itwasfoundthathigher

sucrose added would inducea slightly reduction effect onthe

photocatalyticactivitiesandtheoptimizedreactionconditionwas

estimated

Acknowledgments

ThisworkwaspartlysupportedbytheNationalNaturalScience FoundationofChina(No.51102069).Thisworkwasalsosupported

byHeilongjiangEducationDepartment(12511164)andInnovative TalentsFundofHarbin(2010RFQXG034)

References

[1] Z.L Wang, Materials Science and Engineering Reports 64 (2009) 33–71 [2] H.Q Wang, G.H Li, L.C Jia, G.Z Wang, C.J Tang, Journal of Physical Chemistry

C 112 (2008) 11738–11743.

[3] Q.Z Wu, X Chen, P Zhang, Y.C Han, X.M Chen, Y.H Yan, S.P Li, Crystal Growth

& Design 8 (2008) 3010–3018.

[4] X.F Zhou, D.Y Zhang, Y Zhu, Y.Q Shen, X.F Guo, W.P Ding, Y Chen, Journal of Physical Chemistry B 110 (2006) 25734–25739.

[5] Q.H Zhang, L Gao, J.K Guo, Applied Catalysis B: Environmental 26 (2000) 207–215.

[6] D Li, H Haneda, Chemosphere 51 (2003) 129–137.

[7] J Wang, X.M Fan, K Tian, Z.W Zhou, Y Wang, Applied Surface Science 257 (2011) 7763–7770.

[8] S Cho, S.H Jung, K.H Lee, Journal of Physical Chemistry C 112 (2008) 12769–12776.

[9] J.M Jang, S.D Kim, H.M Choi, J.Y Kim, W.G Jung, Materials Chemistry and Physics 113 (2009) 389–394.

[10] S.J Henley, M.N.R Ashfold, D.P Nicholls, P Wheatley, D Cherns, Applied Physics A: Materials Science & Processing 79 (2004) 1169–1173.

[11] D.F Zhang, L.D Sun, J Zhang, Z.G Yan, C.H Yan, Crystal Growth and Design 8 (2008) 3609–3615.

[12] X.F Zhou, Z.L Hu, Y.Q Fan, S Chen, W.P Ding, N.P Xu, Journal of Physical Chemistry C 112 (2008) 11722–11728.

[13] F Xu, Z.Y Yuan, G.H Du, M Halasa, B.L Su, Applied Physics A: Materials Science

& Processing 86 (2007) 181–185.

[14] K Kakiuchi, E Hosono, T Kimura, H Imai, S Fujihara, Journal of Sol-Gel Science and Technology 39 (2006) 63–72.

[15] S Bose, S.K Saha, Journal of the American Ceramic Society 86 (2003) 1055–1057.

[16] S Bose, Y Wu, Journal of the American Ceramic Society 88 (2005) 1999–2002 [17] Y Wu, A Bandyopadhyay, S Bose, Materials Science and Engineering A 380 (2004) 349–355.

[18] http://www.aist.go.jp/RIODB/SDBS/.

[19] L.L Xu, Z.M Li, Q.H Cai, H.X Wang, H Gao, W Lv, J Liu, CrystEngComm 12 (2010) 2166–2171.

[20] H.R Philipp, L.M Levinson, Journal of Applied Physics 47 (1976) 1112–1122 [21] J.P Liu, X.T Huang, K.M Sulieman, F.L Sun, X He, Journal of Physical Chemistry

B 110 (2006) 10612–10618.

[22] P.L Zhu, J.W Zhang, Z.S Wu, Z.J Zhang, Crystal Growth & Design 8 (2008) 3148–3153.

[23] H.Y Yin, Z.D Xu, Q.S Wang, J.Y Bai, H.H Bao, Materials Chemistry and Physics

91 (2005) 130–133.

[24] Q Ma, A Ogino, T Matsuda, K Shinji, M Nagatsu, Thin Solid Films 518 (2010) 3517.

[25] L.Q Jing, F.L Yuan, H.G Hou, B.F Xin, W.M Cai, H.G Fu, Science in China Series B: Chemistry 48 (2005) 25–30.

[26] M Alvarez, T Lopez, J.A Odriozola, M.A Centeno, M.I Domınguez, M Montesd,

P Quintana, D.H Aguilar, R.D Gonzaˇılez, Applied Catalysis B: Environmental

73 (2007) 34–41.

[27] J.J Benitez, M.A Centeno, J.A Odriozola, R Conanec, R March, Y Laurent, Catal-ysis Letters 34 (1995) 379.

[28] M.J Capitan, M.A Centeno, P Malet, I Carrizosa, J.A Odriozola, A Marquez, J.F Sanz, Journal of Physical Chemistry 99 (1995) 4655.

Ngày đăng: 06/05/2014, 13:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm