Photocatalytic activity was evaluated using the degradationof organic dyemethylorange.The sucroseaddedZnO flowers showed improved activity, whichwas mainlyattributedtothebetter crystallin
Trang 1jo u rn a l h om epa g e :w w w e l s e v i e r c o m / l o ca t e / a p s u s c
Photocatalytic properties of hierarchical ZnO flowers synthesized by a
a Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
b Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080, PR China
c Department of Physics, Northeast Forestry University, Harbin 150040, PR China
a r t i c l e i n f o
Article history:
Received 6 November 2011
Received in revised form 4 April 2012
Accepted 5 April 2012
Available online 24 July 2012
Keywords:
ZnO flowers
Photocatalytic properties
Hydrothermal method
Sucrose
a b s t r a c t
In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrother-mal method.The thermogravimetric analysis/differential thermal analysis (TGA–DTA) and Fourier transform infraredspectra (FTIR)showedthatsucroseactedasacomplexing agentinthe synthe-sis processand assistedcombustion duringannealing Photocatalytic activity was evaluated using the degradationof organic dyemethylorange.The sucroseaddedZnO flowers showed improved activity, whichwas mainlyattributedtothebetter crystallinityasconfirmedbyX-ray photoelec-tronspectroscopy(XPS)analysis.Theeffectofsucroseamount onphotocatalyticactivity wasalso studied
© 2012 Elsevier B.V All rights reserved
Inthelastdecade,zincoxide(ZnO)nanostructureshavearoused
tremendous attention due to its distinguished performance in
piezoelectric systems,optoelectronics, photovoltaicenergy
con-version,photocatalyticdecompositionoforganicpollutantsandas
chemicalsensingelements.Also,ithasbeenfoundthatthose
prop-ertiescanbeimprovedwithspecialmorphologies,shapes,sizes
andcrystallinityofZnOnanostructures[1–6].Thus,thedesigned
andcontrollablefabricationsofZnOwithspecificmorphologiesand
structureshavebeenexploredtogainsuperiorpropertiesinrecent
years[7–10]
Three-dimensionalhierarchicalZnOexhibitedexcellentoptical
andcatalyticproperties.Primaryroutesforthree-dimensional
hier-archicalZnOsynthesisincludevapor–liquid–solid(VLS)growthat
relativelyhightemperature,electrochemicalandsolution-based
methodsforself-assemblyofhierarchicalZnO[11,12].Amongthese
synthesismethods,thehydrothermalmethodisasimple,facileand
∗ Corresponding author at: Key Laboratory of Semiconducter Nanocomposite
Materials, Ministry of Education Department of Physics, School of Physics and
Elec-tronic Engineering, Harbin Normal University, Harbin 150025, PR China.
Tel.: +86 451 88060526; fax: +86 451 88060629.
∗∗ Corresponding author Tel.: +86 451 88060526; fax: +86 451 88060629.
E-mail addresses: xulingling hit@163.com (L Xu), zhaoyan516@126.com
(Y Zhao).
controllablewaytoobtainlargeyieldswithuniquemorphology ZnO canbeusedasa kindof photocatalyst,whichdecomposes organicpollutantswithultra-violetlightexcitation[2,4,13].The hierarchicalstructuresincreasedtheefficiencyofoptical absorp-tionandenhancedthephotocatalyticactivity.Tosynthesizethe hierarchical mesoporous ZnO, the multi-layeredbasic zinc car-bonate (LBZC) was reported to be used as a precursor in the ureaprecipitationorhydrothermalmethod[14,19].Severalreports aboutthefabricationofLBZChaveconcernedabouttheeffectsof surfactants
In the past decade, kinds of morphologies of ZnO can
be synthesized with different surfactant, like cetyltricetyl-trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol (PEG) and so on [21,4,22,23] Usu-ally,theenvironmentally-friendly,low-costandeasily-obtainable sucroseisusedasfuelinthecombustionsynthesisprocedurefor ceramicmaterialfabrication[5,6,15–17].Also,itisreportedthat sucrose can play the role of chealtingagent after the hydroly-sation inacidsolution.Inthis work,sucrosewasintroducedin the urea hydrothermal procedure tofabricate hierarchical ZnO flowers as a chelating agent and fuel The annealing process
of sucrose added precursor wasperformed and moreheat and gases were released, resulting in the good crystallization and largereaction areas in ZnO flowers.Thephotocatalytic proper-tiesofZnOflowersdependentonthesucrosecontentwerealso discussed
0169-4332/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 22 Experimental
2.1 PreparationofZnOflowers
Allthechemicalswereanalyticalgradereagentsandwereused
withoutfurtherpurification.Firstly,0.002Mzincnitratesolution
waspreparedbydissolvingproperZn(NO3)2indeionizedwater.In
atypicalprocedure,0.006molureapowderwasaddedinto20mL
0.002MZn(NO3)2solutionwithvariablequantityofsucrose.After
acontinuousstirringfor15min,themixedsolutionwastransferred
intoa50mLTeflonbottleheldinastainlesssteelautoclave,which
waskeptat90◦Cfor2h.Thewhiteprecursorwaswashedfor
sev-eraltimeswithdeionizedwaterfollowedbydryinginairat75◦Cfor
12h.Furtherheat-treatedwascarriedouttoobtainthefinalZnOat
300◦Cfor2h.Thesampleswith0.08gand0gsucroseaddedwere
labeledasP0andS0.Inordertoassesstherelationshipbetween
theamountofsucroseandthephotocatalyticactivityofZnO,
vari-ableamountofsucroseaddedsampleswerepreparedthroughthe
similarprocess,labeledasP−2,P−1,P1andP2for0.04g,0.06g,0.1g
and0.25g,respectively
2.2 Characterization
Thethermaldecompositionprocessoftheprecursorswas
inves-tigatedbythermogravimetricanalysis/differentialthermalanalysis
(TGA–DTA)usingaTASDT2960instrument.Itwasperformedinair
from40to1000◦Cwithaheatingrateandflowrateof10◦Cmin−1
and 100mLmin−1,respectively PowderX-raydiffraction(XRD)
analysiswascarriedoutbyaRigakuD/Max-2550/pc
diffractome-terusingCu-K␣radiation.TheIRspectraofsucroseandsamples
before/after heat treatmentwere determined by Fourier
trans-forminfraredspectroscopy(FTIR,BrukerIFS66v/s)usingKBrdisc
method.TheratioofKBrtosampleswasabout300:1inweight
ThemorphologiesofZnOflowersobtainedwithvarioussucrose
amountswererevealedbyascanningelectronmicroscope(SEM,
HitachiS-4800).X-rayphotoelectronspectroscopy(XPS)
experi-mentsweremeasuredwithaK-Alpha (ThermofisherScienticfic
Company)X-rayphotoelectronspectrometerusingAlK␣radiation
(12kV,6mA).Thebindingenergiesofelementswerecalibratedby
takingcarbonC1s(285.06eV)asreference
2.3 Photocatalyticactivitiestests
Inthiswork,thephotocatalyticactivitiesofhierarchical
struc-turesZnOweretestedbyusingmethylorange(MO)asthemodel
pollutant.0.02gsamplewasaddedinto50mL,1.2×10−5MMO
solutionandmechanicallystirredindarkfor20mintoachievethe
adsorptionequilibriumofMOwithZnObeforetheUVirradiation
Inacoolwaterbath,themixturewasirradiatedbytwoUVlamps
(Philips,8W)withcontinuousstirring.Thesamplesweretakenout
fromthemixedsuspensionatevery20mintocheckthechangesof
MOconcentration.ToremovethecatalystsofZnO,centrifugation
wascarriedoutat10,000rpmfor10min.TheUV–visabsorption
spectraofthecentrifugedsolutionsweremeasuredontheHITACHI
UV/visspectrometer(U-3010)
Toinvestigatetheappropriatecalcinationstemperatureforthe
transformationoftheprecursortoZnO,thethermalanalysisinair
atmosphere wasconducted.TypicalTGA/DTA plotsfor the
pre-cursorofsampleP0isshowninFig.1.Atthebeginning,asmall
endothermicpeakwith5.4%weightlosscanbeobserved,which
ismainlyattributedtotheevaporationofwaterintheprecursors
Inthetemperaturerangeof100–400◦C,anobviousendothermic
Fig 1. TGA–DTA curves of the precursor of P 0
Fig 2.XRD patterns of the samples: (a) the precursor of P 0 , (b) P 0
peakscenteredat259.3◦CcanbefoundinDTAcurve Simultane-ously,afasterweightlossstage,claimedas25.8%canbeobservedin TGAcurve.Thethermaldecompositionprocessescanbeascribedto thedecompositionandoxidationoftheprecursorbythereleasing
ofwaterandcarbondioxide.Therefore,theannealingtemperature waschosenat300◦Ctoobtainthefinalproducts
ThepurityandcrystallinephaseofP0 andtheprecursorofP0 weredeterminedbyXRD.Fig.2(a)showedtheXRDpatternsof theprecursor.Asacomparison,theXRDpatternofZnOproduct (P0)aftercalcinationwasalsopresented(Fig.2(b)).Thediffraction peaksinFig.2(a)canbeidentifiedastheZn4(CO3)(OH)6H2O,which wasconsistentwithJCPDSCardNo.11-0287.While,thediffraction peaksofP0 canbeidentifiedaspurehexagonalZnO(JCPDSCard
No.36-1451).TheXRDpatternsofP0andtheprecursorare con-sistentwithourpreviousresultswithnosucroseaddedsynthesis procedure[19].Itshowsthatthesucroseascomplexingagentwill notinfluencetheformationoftheprecursor(Zn4(CO3)(OH)6H2O) andthefinalproductZnO
Inthesynthesisprocess,sucrosewasintroducedintotheurea hydrothermalprocedure Toclarifytherole ofsucroseactingin thecrystalgrowth,FTIRspectraweremeasuredtoverifythe possi-bleintermediateby-productsandtheresultswereshowninFig.3
Wefoundthatsucroseplayedtherolesofcomplexingagentand fuelinthesynthesisprocess.Inacidicsolution,thesucrosefirstly hydrolyzesintoglucoseandfructose,whichcanbefurtheroxidized intosaccharicacid,glycolicacidandtrihydroxy-butyricacidwitha largenumberof–COOHand–OHgroups.Furthermore,the COOH groupscaneasilycombinewithmetalionsinthesolution,which
isquitesimilartothecitricacidcomplexingmechanisms
Trang 3Fig 3.FTIR spectra of samples (a) sucrose (b) the precursor of P 0 (c) calcined at
300 ◦ C (P 0 ).
Fig.3(a)shows theFTIR spectrumof sucrose andits typical
absorptionsareinagreementwiththespectrumindatabase[18]
Itisworthnoticingthatnoobviousabsorptionispresentbetween
1500cm−1and2500cm−1.While,thespectrumfortheprecursor
ofP0showninFig.3(b)clearlyshowsthecoordinated COO−
sym-metricstretchingwithbroadabsorptionaround1618cm−1,which
comesfromtheproductsofthesucrosehydrolyzation[20]
Consid-eringthecomplexingabilitymentionedabove,itcanbeidentified
thatthemetalionsarewellcomplexedbythe COOHgroups,
form-ingstable COOZn2+.Andinfact,noprecipitationwasobserved
duringthestirring.Moreover,thebroadabsorptionbandcentered
at3400cm−1canbeobservedduetothe OHstretchingvibration,
whichcanbeattributedtotheexistenceofcrystallizationwater
intheprecursor.Theabsorptionbandaround1385cm−1 is typ-icalasymmetricstretchingvibrationofNO3 −,whichcomesfrom
therawmaterialZn(NO3)2.Aftercalcinationat300◦C(Fig.3c),the chelatingcomplexesdecomposedandamassofgasesare gener-ated,whicharefavoredfortheformationofporousproduct.As curve(b)showed,ininfraredabsorptionspectraoftheprecursor, theabsorptionpeakat1048cm−1,830cm−1,711cm−1areascribed
toCO3 −latticevibrationinducedinfraredabsorption.Therefore,
the FTIR shows theprecursor is theZn4(CO3)(OH)6H2O,which
isconsistentwiththeXRDresults.Afterannealingat300◦C,the infraredabsorptionspectra(Fig.3(c))showsthatanewabsorption peakcenteredat474cm−1appears,indicatingtheformationofZnO andthecompletedecompositionoftheprecursors
Fig.4(a)showsthetypicalSEMimagesoftheproductsafter annealingat300◦C.Obviously,thehierarchicalstructurewas con-structedbylargequantitiesoffluffynanosheeteswithauniform sizedistributionofmicro-flowers.TheenlargeviewoftheP0in
Fig.4(b)showsthatthediameterofZnOflowersisabout10m The nanosheets petals are narrow in width and ended with a sharptip.Theabundanceofpetalswillgreatlyincreasethe con-tactareabetweenthecatalystsandorganicdyes.Moreover,thegap formedbytheadjacentnanosheetswouldenhancetheabsorption
ofexcitinglightandpromotethephotocatalyticactivitiesofZnO Theopticalabsorptionefficiencyincreasedbythediffuse reflec-tionhappensamongthepetals,asshownintheinsertedfigureof
Fig.4(b).Ontheotherhand,themicrostructureofthenanosheets petalsalsoshowsdifferencesbetweensucroseaddingsampleP0
andnosucroseaddingoneS0.ThehighmagnificationSEMimages
ofpetalsfromS0andP0wereshowninFig.4(c,d).Apparently,the poresonthenanosheetsarequitedistinguishedfromeachother Themicrostructureof S0 presentsthattheporesareembedded
inthepetals,likelargenumberofholesonaflatsurface.While, forthesucroseaddedsampleP0,theporeswereformedbythe
Fig 4.SEM images (a) Flower-like ZnO of P 0 (b) An enlarge view of P 0 The inserted shows the abridged general view of the possible light absorption in the sample P 0 (c)
Trang 4Fig 5.Photodegradation of MO in the solution with S 0 and P 0 ZnO flowers.
connectionofagreatquantitiesofZnOnanoparticlespresenting
largersurfaceareascompared withS0.In fact,thereisno
obvi-ousdifferenceintheflowerlikestatusbetweentheprecursorsof
P0andS0,indicatingthatthesucroseeffectsonthemorphology
ofLBZC(Zn4(CO3)(OH)6H2O)isnotobvious.However,togainthe
finalZnOhierarchicalstructures,annealingprocesswascarriedout
andtheroleofsucrosewasactivatedduringthedecompositionof
LBZC.Intheprocessofsynthesis,thesucrosehydrolyzesintotwo
kindsofmonosaccharides,glucoseandfructosethatis
homodis-perseintheZn4(CO3)(OH)6H2Oandassistcombustionduringthe
annealing.Consideringthesucrosecanbeusedasfuelinthe
fab-ricationofoxides,thehightemperaturedecompositionprocessof
LBZCwithsucroseaddingcanbetreatedasamoreintensiveand
rapidcombustion,leadingtotheprecursorburningmuch more
sufficientlyandthecrystallinityofZnOparticlesimproved.Good
crystallinequalitycanbereflectedfromthemicrostructureof
sam-ples.Sphericalnanoparticlesconstitutingtheresultantnanosheets
wereformedbytheadditionalheatingfromtheaddedsucrose,
whichwouldbebeneficialtothephotocatalyticactivity.Toevaluate
thesucroseeffectsonthephotocatalyticactivity,theperformances
ofS0andP0wereinvestigatedbythedegradationofMOdyeunder
UVirradiation.Fig.5comparesthephotodegradationofMOasa
functionofirradiationtimefortheP0andS0samples.Asclearly
shown,afterirradiationfor100min,thephotocatalyticdegradation
ofMOonS0is80%.Infact,wehavediscussedthesuperior
photocat-alyticpropertiesofthemulti-layeredmesoporousZnOstructures
(S0)decomposingtheMO,whichshowedthesuperior
photocat-alyticactivitytothecommercialZnO19.Surprisingly,incomparison
withtheS0,asmallamountofsucroseaddingsampleP0displayed
muchhigherdecompositionefficiencywithadegradationrateof
nealy100%afterirradiationfor80min.Consideringthedifferences
inthesynthesizedprocedure,sucroseaddingplaysanimportant
roleinimprovingthephotocatalyticproperties
ThesurfacesensitivediagnostictestXPSwasconductedto
elu-cidatetheoxidationstatesofS0 andP0.Fig.6demonstratesthe
high-resolutionXPSspectraofO1sstatesofsampleS0andP0
Obvi-ously,theXPSspectraofO1speaksisasymmetricandbroadening,
whichcanberesolvedintotwopeaksbyaGaussiandistribution
fittingcenteredat530.1±0.2eVand531.7±0.2eV,respectively
Thefittingindicatesthatatleasttwooxygenspeciesarepresentin
thenear-surfaceregion
OAsignalpeaksarecenteredat530.1±0.2eVisduetooxygenin
thewurtzitestructureofZnO(latticeoxygen),andtheintensityof
thispeakisameasureoffullyoxidizedoxygenatoms[24].O signal
(a) S0
Bindin g Energ y (e V)
O1s Scan B O1s Scan A
(b) P0
Binding En ergy (eV)
O1s Scan A
O1s Scan B
Fig 6.The high-resolution XPS spectra of O1s states of sample S 0 (a) and P 0 (b).
peaksat531.7±0.2eVcorrespondstotheadsorbedoxygen,which
isascribedtothepresenceofadsorbedoxygen,includinghydroxyl andcarbonategroupsadsorbedonthematerialsurface.[25–28]The integratedintensityofpeakOAcanbecomparedwiththatofpeak
OBusingtheOA toOB integratedintensityratio“X,”whichwas approximately2.0and1.7forP0andS0,respectively.Apparently, thelatticeoxygeninthesucroseaddedsampleP0ishigherthan thatofsampleS0.Thisresultalsoindicatesthatthecrystallinityof
P0issuperiortoS0duetotheaddedsucroseprovidingwithmore energyduringannealing.Under theUVexcitation,electron-hole pairscarriedoutredoxreactionandmoresurfacedefectswillbe companiedwithhighercombinationprobabilityofsurfacestates andhole.However,thehighcrystallinitywoulddecreasesurface defectsandthecombinationprobabilityofsurfacestatesandholes thatcanenhancephotocatalyticactivity.[5,6]Consideringthe pho-tocatalyticactivityofP0 andS0,thesucroseinducedcrystallinity improvementisaneffectivetreatmenttoincreasethe photoactiv-ityofZnOphotocatalysts.Inordertofindtherelationshipbetween theamountofsucroseandthephotocatalyticactivityofZnO, vari-ableamountofsucroseaddedsampleswerepreparedthroughthe similarprocess.Fig.7showstheplotofthedecolorization efficien-ciesofMObytheZnOwithvariablesucroseafter40minreaction time.It canbeseenthatnosucroseaddedZnO S0 shownearly 60%decolorizationefficiency.Withthesucroseadded,ZnOsamples showedmuchbetterphotocatalyticactivityandthedecolorization efficienciesweregreatlyincreased.AsshowninFig.7,P0showsthe superiorphotocatalyticactivityanddecolorizationefficiencywas achieved95%.While,otherZnOsamplewithfewerormoresucrose
Trang 5Fig 7.Photocatativity comparison of ZnO flowers after MO degradation for 40 min.
The sucrose contents of S 0 , P−2, P−1, P 0 , P 1 , P 2 were 0 g, 0.04 g, 0.06 g 0.08 g 0.1 g and
0.25 g, respectively.
addedshowlowerdecolorizationefficienciesduringthesame
reac-tiontime.Sincethesmallamountofsucroseaddedcanresultin
negligibleeffectsonthemorphology,thecrystallinityand
agglom-erationofphotocatalystsshouldbeconsidered.Insomecases,it
wasfoundthattheheatgeneratedduringthereactioncouldbe
moreprominenttocausesinteringoragglomerationofparticles,
resultingin graingrowthand lowphotocatalytic reactionsites
Therefore,theoptimizationofreactionconditionwasestablished
for0.08gsucroseaddedZnOflowers
Inthisstudy,hierarchicalstructuresZnOwassuccessfully
syn-thesized via a sucrose added urea hydrothermal method The
preparedZnOflowerswerecharacterizedbyTG-DTA,FTIR,XRD
andSEM.ThephotocatalyticactivitiesofZnOflowerswere
evalu-atedbythedegradationofMOandresultsshowthatthesucrose
addedsamplepresentssuperiordecolorizationefficiency.TheXPS
analysis reflected that the adding of sucrose can improve the
crystallizationofZnO TheZnO flowerssynthesizedviavariable
sucroseamountwerealso estimatedbythedecolorization
effi-ciencyofMOafter40minreactiontime.Itwasfoundthathigher
sucrose added would inducea slightly reduction effect onthe
photocatalyticactivitiesandtheoptimizedreactionconditionwas
estimated
Acknowledgments
ThisworkwaspartlysupportedbytheNationalNaturalScience FoundationofChina(No.51102069).Thisworkwasalsosupported
byHeilongjiangEducationDepartment(12511164)andInnovative TalentsFundofHarbin(2010RFQXG034)
References
[1] Z.L Wang, Materials Science and Engineering Reports 64 (2009) 33–71 [2] H.Q Wang, G.H Li, L.C Jia, G.Z Wang, C.J Tang, Journal of Physical Chemistry
C 112 (2008) 11738–11743.
[3] Q.Z Wu, X Chen, P Zhang, Y.C Han, X.M Chen, Y.H Yan, S.P Li, Crystal Growth
& Design 8 (2008) 3010–3018.
[4] X.F Zhou, D.Y Zhang, Y Zhu, Y.Q Shen, X.F Guo, W.P Ding, Y Chen, Journal of Physical Chemistry B 110 (2006) 25734–25739.
[5] Q.H Zhang, L Gao, J.K Guo, Applied Catalysis B: Environmental 26 (2000) 207–215.
[6] D Li, H Haneda, Chemosphere 51 (2003) 129–137.
[7] J Wang, X.M Fan, K Tian, Z.W Zhou, Y Wang, Applied Surface Science 257 (2011) 7763–7770.
[8] S Cho, S.H Jung, K.H Lee, Journal of Physical Chemistry C 112 (2008) 12769–12776.
[9] J.M Jang, S.D Kim, H.M Choi, J.Y Kim, W.G Jung, Materials Chemistry and Physics 113 (2009) 389–394.
[10] S.J Henley, M.N.R Ashfold, D.P Nicholls, P Wheatley, D Cherns, Applied Physics A: Materials Science & Processing 79 (2004) 1169–1173.
[11] D.F Zhang, L.D Sun, J Zhang, Z.G Yan, C.H Yan, Crystal Growth and Design 8 (2008) 3609–3615.
[12] X.F Zhou, Z.L Hu, Y.Q Fan, S Chen, W.P Ding, N.P Xu, Journal of Physical Chemistry C 112 (2008) 11722–11728.
[13] F Xu, Z.Y Yuan, G.H Du, M Halasa, B.L Su, Applied Physics A: Materials Science
& Processing 86 (2007) 181–185.
[14] K Kakiuchi, E Hosono, T Kimura, H Imai, S Fujihara, Journal of Sol-Gel Science and Technology 39 (2006) 63–72.
[15] S Bose, S.K Saha, Journal of the American Ceramic Society 86 (2003) 1055–1057.
[16] S Bose, Y Wu, Journal of the American Ceramic Society 88 (2005) 1999–2002 [17] Y Wu, A Bandyopadhyay, S Bose, Materials Science and Engineering A 380 (2004) 349–355.
[18] http://www.aist.go.jp/RIODB/SDBS/.
[19] L.L Xu, Z.M Li, Q.H Cai, H.X Wang, H Gao, W Lv, J Liu, CrystEngComm 12 (2010) 2166–2171.
[20] H.R Philipp, L.M Levinson, Journal of Applied Physics 47 (1976) 1112–1122 [21] J.P Liu, X.T Huang, K.M Sulieman, F.L Sun, X He, Journal of Physical Chemistry
B 110 (2006) 10612–10618.
[22] P.L Zhu, J.W Zhang, Z.S Wu, Z.J Zhang, Crystal Growth & Design 8 (2008) 3148–3153.
[23] H.Y Yin, Z.D Xu, Q.S Wang, J.Y Bai, H.H Bao, Materials Chemistry and Physics
91 (2005) 130–133.
[24] Q Ma, A Ogino, T Matsuda, K Shinji, M Nagatsu, Thin Solid Films 518 (2010) 3517.
[25] L.Q Jing, F.L Yuan, H.G Hou, B.F Xin, W.M Cai, H.G Fu, Science in China Series B: Chemistry 48 (2005) 25–30.
[26] M Alvarez, T Lopez, J.A Odriozola, M.A Centeno, M.I Domınguez, M Montesd,
P Quintana, D.H Aguilar, R.D Gonzaˇılez, Applied Catalysis B: Environmental
73 (2007) 34–41.
[27] J.J Benitez, M.A Centeno, J.A Odriozola, R Conanec, R March, Y Laurent, Catal-ysis Letters 34 (1995) 379.
[28] M.J Capitan, M.A Centeno, P Malet, I Carrizosa, J.A Odriozola, A Marquez, J.F Sanz, Journal of Physical Chemistry 99 (1995) 4655.