c o m / l o c a t e / s n b Weiwei Guoa, Tianmo Liua,∗, Rong Sunb, Yong Chena,c, Wen Zenga, Zhongchang Wangc,∗ a College of Materials Science and Engineering, Chongqing University, Chong
Trang 1j o u r n al hom e p a g e :w w w e l s e v i e r c o m / l o c a t e / s n b
Weiwei Guoa, Tianmo Liua,∗, Rong Sunb, Yong Chena,c, Wen Zenga, Zhongchang Wangc,∗
a College of Materials Science and Engineering, Chongqing University, Chongqing, China
b Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
c WPI Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Article history:
Received 20 June 2012
Received in revised form
18 December 2012
Accepted 20 December 2012
Available online 28 December 2012
Keywords:
ZnO
Nanospheres
Gas sensor
Yttrium doping
WereportthesynthesisofahierarchicalnanostructureofhollowandporousZnOnanosphereswitha highspecificsurfaceareaasanovelsensingmaterialtotoxicformaldehydebyasimpletemplate-free hydrothermaltechniqueinorganicsolution.Wedemonstratethattheliquidmixtureratioand hydro-thermaltimeplayapivotalroleinformingsuchuniquemorphologyandproposeagrowthmechanism
ofOstwaldripeningcoupledwithgrainrotationinducedgraincoalescence.Comparisoninvestigations revealthatyttriumallowsresistancereductionofsensorsandenhancessignificantlygas-sensing per-formancesofZnOnanospherestowardtheformaldehydeoverthecommonlyusedundecoratedZnO nanoparticles.Suchhollow,porous,andyttriumfunctionalizedZnOnanospherescouldthereforeserve
ashybridfunctionalmaterialsforchemicalgassensors.Theresultsrepresentanadvanceofhierarchical nanostructuresinenhancingfurtherthefunctionalityofgassensors,andthefacilemethodpresented couldbeapplicabletomanyothersensingmaterials
© 2012 Elsevier B.V All rights reserved
1 Introduction
Inorganicnanomaterialswithhollowandporous
superstruc-turesfindnumeroustechnologicalapplicationswhere
morpholo-gies are known to influence functionality Gas sensors [1–3],
catalysts [4,5], drugdelivery carriers [6,7], and photoelectronic
buildingblocks[8–10]arejustafewsignificantexamples.In
gen-eral,themorphologywithalargespecificsurfaceareaandefficient
porosityisoftenbeneficialforthecatalytic,gas-sensingand
pho-tovoltaic applications due to thelikelihood toenhance surface
reactions.Inthisrespect,theactivesearchofunusualmorphology
iscurrentlythesubjectofintensiveresearchinthenanomaterials
world[11,12].Oneofthemostwell-characterizednanomaterials
intermsofmorphologyisZnO,whichisann-typesemiconductor
withadirectwidebandgap(3.37eV)andalargeexcitationbinding
energy(60meV)[13,14].Todate,asubstantialamountof
exper-imentshave already provided definitiveevidence thatsize and
morphologyofZnOnanomaterialscanaffectgreatlytheir
perform-ances,especiallygas-sensingfunctionality[15–17].Ontheother
hand,dopingZnOwithvariouselements,e.g.,noblemetals[18–20],
rare-earthmetals[21],transitionmetals[22],andmetaloxides[23]
∗ Corresponding authors Tel.: +81 22 217 5933; fax: +81 22 217 5930.
E-mail addresses: tmliu@cqu.edu.cn (T Liu), zcwang@wpi-aimr.tohoku.ac.jp,
wang@cello.t.u-tokyo.ac.jp (Z Wang).
hasbeensuspectedtoenablemodulationofsurfacechargestates
ofZnO,modifyingsignificantlyitsfunctionality
Ageneralapproachtodatetofabricatenanomaterialswiththe hollowandporousmorphologiesaccompaniestheuseof remov-ableorsacrificialtemplates,includingeitherthehardonessuchas monodispersesilica[24],polymerlatexspheres,[25,26]and reduc-ing metalnanoparticles[27],orthesoft onessuchas emulsion micelles[28]andgasbubbles[29].Thedisadvantagesfortheuse
oftemplatesthoughrestwiththehighcostandtedious synthe-sisprocess,posingasignificanthurdletothelarge-scaleindustrial applications.Ideally,one wouldpreferaone-step template-free methodtosynthesizethenanomaterialswithhollowandporous superstructuresina sizetunablemanner.Recentbreakthroughs
in the fabrication of nanomaterials by taking full advantageof knownphysicalphenomena,e.g.,orientedattachment[30,31], Ost-waldripening[32–34],Kirkendalleffect[35,36],andetching-based inside-outevacuation[37,38],hasbroughtsuch“ideal” concept closertoreality.Amongallthefabricationtechniques,theetching processhasbeendemonstratedasafacilechoiceforpreparing hol-lowandporousnanomaterialsbecauseitiseasytodissolveinner nano-crystallitesviaadjusting processingtimeand temperature
[39–41] Here,wereportatechnicallysimpleandflexibleroute:theuse
of a template-freehydrothermal process topreparethehollow andporousZnOnanosphereswithalargespecificareaina con-trollablemanner.Weinvestigateindetailtheeffectoftheliquid mixtureratioandhydrothermaltimeonthemorphologyevolution
0925-4005/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 2nucleationandself-assemblyofZnObuildingblocks,i.e.,coupling
ofOstwaldripeningwithgrain-rotation-inducedgraincoalescence
(GRIGC).Such a uniquemorphologyis maintainedafterdoping
yttrium(Y)toproducehybridfunctionalityofZnOasagas-sensing
material,which, to thebestof ourknowledge, hasrarelybeen
reported.OurresultsdemonstratethatY-dopedZnOnanospheres
lowerremarkably resistanceandenhance gas-sensing
perform-ances,whichmayopenupanewavenuetodevelopadvancedgas
sensors
2 Experimental
AllZnO nanosphereswere synthesizedby thehydrothermal
method Zinc acetate dehydrate (Zn(CH3COOH)2·2H2O) (4mM)
wasfirstdissolvedintoamixedsolutionofethanol(40mL)and
monoethanolamine(MEA)(30mL)undermechanicalstirringfor
1h.Thesolutionwasthentransferredinautoclaves,whichwere
heated to160◦C for24htoproduce precipitate.The pureZnO
powder was prepared by centrifuging the precipitate, washing
it with distilled water and ethanol to remove unwanted ions,
anddryingat60◦Cinair.Theobtainedpowder(0.03g)was
dis-persedindeionizedwater(20mL),and1.5mLmixedsolutionof
ethanolandyttriumnitratehexahydrate(N3O9Y·6H2O)(0.01M)
wasthenadded.Thesolutionwasstirredthoroughlyfor1hand
driedat80◦C inairbeforeannealingat400◦C for2hto
elimi-nateNO3 ions.TheY-dopedZnOpowderwithamassratioofY
toZnof4%washarvested.Tomakea straightforward
compari-son,theZnOnanoparticleswerealsopreparedbydissolving4mM
Zn(CH3COOH)2·2H2Oand20mMNaOHin70mLdistilledwater,
whichwasthentransferredinautoclavesandheatedat160◦Cfor
20h
Microstructureanalysis wasconductedby theX-ray
diffrac-tion(XRD),scanningelectronmicroscopy(SEM),andtransmission
electron microscopy (TEM) For the XRD, a Rigaku
D/Max-1200X diffractometry with Cu K˛ radiation operated at 40kV
and 200mA was applied Surface morphologies of the
sam-pleswereobservedusingaHitachiS-4300SEM.Microstructures
and chemical composition were analyzed using the JEOL
JEM-2010Felectronmicroscopeoperatedatanacceleratingvoltageof
200kV.Specificsurfaceareawasmeasureduponthemultipoint
Brunauer–Emmett–Teller (BET) analysis of nitrogen adsorption
isotherms, which were recorded on a surface area analyzer
(Micromeritics,ASAP2020M)
Thepowdersupon harvestweremixedwithdiethanolamine
andethanoltoformpastes,whichweresubsequentlycoatedonto
analuminaceramictubepre-loadedwithapairofgoldelectrodes
ateachend Next,thetubewasdriedat400◦C for2hinorder
to eliminate organic binder as well as strengthen the bonding
betweenthepastesandtube.ANi–Crwirewasplacedinsidethe
tubeasaheater.Theheatingwireandtubeweresolderedonthe
pedestalstofabricategassensors.Thesensorswerefinallyaged
at200◦Cfor240hin ordertoimprove stabilityand
repeatabil-ity.Gas-sensingmeasurementswereconductedusingacomputer
controlledmeasurementsystem(HW-30A,HanweiElectronicsCo.,
Ltd.)atroomtemperatureatahumidityof40%.Thesensorwas
firstconnectedtothecircuitboardofmeasurementsystem,and
thenthetestedgaswasintroducedintotheglasschamberthrough
injectingagivenamountofgas.Theoperatingtemperatureof
sen-sorscanbeadjustedpreciselyviaalteringthecurrentflowacross
theNi–Crheater.Resistance(Rs)ofthesensorswasestimatedby
Rs=RL(Vc−Vout)/Vout,wheretheRLwasresistanceofaloadresistor
(RL=47k), and theVc and Vout were circuitand output
volt-age(Vc=6V),respectively.Thesensorresponse(S)wasdefinedas
S=R /R atreductiveatmosphere,whileasS=R /R atoxidative
Fig 1. XRD spectra of Y-free and Y-doped ZnO nanospheres with a series of Y/Zn ratios Textural orientations of detected matters are given as well for easy reference.
atmosphere,whereRaandRgwereresistanceinairandtargetgas, respectively.Theresponseandrecoverytimewasdefinedasthe intervalbetweenwhenresponsereached90%ofitsmaximumand droppedto10%ofitsmaximum
3 Results and discussion
3.1 Chemicalcompositionandmorphology
Toidentifychemicallythepreparedsamples,wefirstconducted XRDanalyses,asshowninFig.1,wheretexturalorientationofthe detectedmattersisshownaswellforeasyreference.FortheZnO, 2%and4%Y-dopedZnOsamples,allofthepeaksareidentifiedas belongingtothewurtzite(hexagonal)structureofZnO(JCPDS (36-1451)).Nosecondaryphaseisdetectedalthoughthelatticeofthe Y-dopedsampleisfoundtobesomewhatexpandedascompared
totheY-freesample.InadditiontoZnO,Y2O3isalsodetectedinthe 6%and8%Y-dopedZnOsamples.ThissuggeststhattheYatomsfill thelatticesitesofZnOatthelowdopingconcentration,buttend
toformanewY2O3phaseathighdopingconcentration(over6%) However,therearenocharacteristicsecondary-phaseXRDpeaks
inthe2%and4%Y-dopedZnOsamples,indicatingthatthe sec-ondaryphase isveryscarceorhighlydispersed.Thisisbecause thereappearwelldefinedXRDpeaksifsizeofthecrystallitesis above1–3nm[42].Thiscaseisalsorecognizedintwo-phase sys-tems,inwhichthesecondaryphasewithasmallconcentrationis highlydispersedonsurfacesofthebasicoxide’sgrains.These indi-catethatthesecondaryoxidephase,ifhave,shouldhaveasmaller grainsizethanthebasicoxideinthesampleswithYdoping con-centrationsof2%and4%.Whenthedopingconcentrationisover 6%,anewY2O3phaseisformedwithagrainsizelargerthan3nm
Table1liststhelatticeconstantsofboththeundopedandY-doped samplesobtainedfromXRDdataandthecrystallitesizecalculated usingtheScherrerformula.Thelatticeconstants(aandc)andgrain sizesincreasewiththeriseoftheamountofY,suggestingthatthe introductionofYdistortsthecrystalstructureofthehostoxide
Table 1
The lattice constants of the Y-doped ZnO sphere and ZnO nanoparticle, and grain sizes calculated using the Scherrer formula.
Trang 3ThisisbecausetheradiusofY3+ion(0.92 ˚A)islargerthanthatof
Fig.2 SEMimagesofrepresentative regionsin thepristineand
doped nanospheresand the nanoparticles.Asseen in Fig 2(a),
theY-freesampleisindeedcharacterizedasnanospheres,which
areuniformlydistributed.Thesenanospheresarecoarseon
sur-face(Fig.2(b)and(c))andhollowinside,asclearlyverifiedina
brokennanosphere(Fig.2(d)).Interestingly,thenanospheresare
self-assembledtoradiallyalignednanorodsof∼150nminlength
fromtheircoresyettoself-wrappedirregularnanoparticlesatthe
cores.Poresturnuponthenanospheresurfaces,indicatingthatthe
as-synthesizedpristinesamplesarenotonlyhollowbutporous
Suchahierarchicalmorphologyarefurthercorroboratedfromthe
TEMimagesshowingadifferenceintheimagecontrastbetweenthe
marginandcenterofnanospheres,i.e.,thecenterseemsbrighter,
whichindicatestheformationofthewell-definedhollow
nano-structures(Fig.3(a)).Fig.3(b)and(c)givesTEMimagesofedge
regionsofthenanospheres,whichshowunambiguouslythepores
(Fig.3(b)),nanorods,andnanoparticles(Fig.3(c)).Fig.3(d)presents
ahigh-resolutionTEM(HRTEM)imageofanedgeofananosphere
(only theedge is likely for imaging due to thelargethickness
awayfromsurface),fromwhichlatticefringesareclearlyvisible
Thespacingbetweenneighboringlatticeplanesisestimatedtobe
∼0.26nm,inlinewiththatbetweenthe(0001)planesofa
hexag-onalZnO(insetofFig.3(d)),suggestingthattheZnOnanorodsgrow
inthe[0001]direction
Suchinterestinghollowandporousnanospheresarenot
dis-turbedsignificantlybyYdoping(Fig.2(e)–(g)),althoughtheirsize
becomeslargerduetothegrowthduringpost-annealing.Fig.2(h)
showsthemorphologyofnanoparticlesforacomparison,which
areaccumulatedwithameansizeof∼50nm.Fig.3(e)–(g)presents
TEMimagesoftheY-dopedsamples,wheretheyretaintheporous
andhollownature.Likewhatwasseeninthepristinesample,the
nanorodsalsogrowinthe[0001]directionevenwhentheYis
doped.Toidentifychemicallythesamples,weperforman
energy-dispersiveX-rayspectroscopy(EDS)analysisofarepresentative
nanosphereinthepristineand4%Y-dopedsample,asshownin
Fig.3(h).Thenanospheresinthepristinesamplearecomposedof
40.4at%Oand59.6at%Zn,whilethoseinthe4%Y-dopedsample
34.21at%O,63.78at%Znand2.01at%Y,demonstratingthatthe
embeddedadditiveofYisreallypresentintheZnOmatrix.Further
EDSmappingofboththeentiresphereandtheedgerevealsaneven
distributionofO(Fig.3(j))andZn(Fig.3(k)),providingdirect
evi-dencetotheuniformdistributionofYinthedopedsample(Fig.3(l))
andfurthertestifyingthesecondoxidephaseispresentinthe4%
Y-dopedZnOmatrix,inconsistencewiththeXRDresults
3.2 Formationmechanismofhollowandporousnanospheres
To gain insight into formation mechanism of the
hierarchi-calnanostructuresandhowmorphologyevolveswithprocessing
conditions,wefirstinvestigatesystemicallytheroleofsolvent
com-positiononthestructuresofnanomaterials.AsseeninFig.4(a)
and (b), the ZnO nanorodsare clustered when the MEAis not
introduced.OncetheMEAisadded(5mL),thenanorodsare
bun-dledirregularlyandlooselywithameanlengthof500nm(Fig.4(c)
and(d)).FurtherincreaseintheMEAconcentration(15mL)renders
thesebundlesself-assembledtofan-shapedhemispheres(Fig.4(e)
and(f)).Thehollowandporousnanospheresareformedwhenthe
concentrationofMEAisincreasedfurtherto30mL(Fig.4(g)and
(h)).Thenanospheresbecomedenserwithfewerholesonsurfaces
astheMEAconcentrationisincreasedto40mL(Fig.4(i)and(j))
However,thenanospheresarenonporousandsolidwhenthe con-centrationofMEAisincreasedto50mL(Fig.4(k)and(l)),implying thattheprecisecontroloftheMEAconcentrationisessentialto producingahierarchicalsuperstructure
Theformationofnanorodsinthe[0001]directionwithoutMEA
isunderstooduponthestructuralanisotropyandsurfacepolarityof ZnO.The(0001)polarplaneisthemostenergeticallyunfavorable andbearsthehighestgrowthrate,followedby(1011),(1010), (1011),and(0001)planes(insetofFig.3(d))[43,44].Oncethe MEAisintheethanolsolution,thecoordinated[Zn(MEA)m]2+ions (wheremisaninteger)aregenerated,restrainingtheformation
offreeZn2+ionsandtheZn(OH)2,thenucleiofZnOnanomaterial ThechemicalreactionsinpresenceofMEAduringhydrothermal processcanbeexpressedas:
Zn(OOCCH3)2·2H2O+2C2H5OH →Zn(OH)2+2H2O
Asthetemperatureisincreasedintheautoclaves,the[Zn(MEA)m]2+
ionsarereadytobedecomposedtoZn2+ionsandethanolamine molecules (Eq.(1)).Simultaneously,there occursthe esterifica-tion of zinc acetate withethanol toproduce Zn(OH)2 (Eq (2)), whichisultimatelydecomposed toZnOnanomaterials(Eq.(3)) Theethanolaminemolecules,whichareadsorbedonthesurfacesof ZnOnuclei,canserveasassemblingagents,refrainingcrystalsfrom formingnanorodsalongthe[0001]direction[45].Themetastable nanoparticlesareproducedinsteadattheinitialnucleationstage, whichisimportantforthenext-stageOstwaldripeningprocedure Twofactorsareresponsiblefortheevolutionofmorphologyat solvothermalcondition:theinitialnucleationstatusandthe solu-bilityofprecursorsinsolventundersaturationvaporpressure[46] NotethatthesolventMEAislowerthanethanolinthesaturation vaporpressureduetoitshigherboilingpoint(78.29◦Cforethanol while170◦CforMEA).Thisgivesrisetoextensivenucleationof metastablenanoparticles,whichareaggregatedintonanospheres
tolowertheirsurfaceareasandenergies[47].Inadditionto form-ingthesphericalconfiguration,theMEAalsoplaysapivotalrole
inmakingthenanosphereshollowandporous.Incontrasttothe fastmigrationandhighnucleationrateofthereactivespeciesin ethanol,itiskineticallyslowertoformmetastablenanocrystalsin MEAsolutionduetothehigherboilingpointandviscosityofMEA Thisallowsthemixtureofnanocrystalswithvaryinggrowth orien-tationstoassembleintosphericalnanoparticles.Ontheotherhand, theMEAisabletofacilitatetheformationofmetastable nanoparti-cles,theinteriorsofwhicharesusceptibletobedissolved,thereby producingthehollownanospheres
To shed more light ontheformation mechanism of hollow, porousnanospheres,weconductaseriesoftime-dependent inves-tigations,asshowninFig.5.Attheearlystage(4h),solidspherical nanoparticles (Fig 5(a) and (b)) are formed (Fig 5(c)) As the reaction time is increased to 8h, hollowing process starts at the nanosphere cores (Fig 5(d) and (e)), and the surfaces of nanospheres turn rough(Fig.5(f)),indicating that a portionof particlesonsurfacesaredissolved.Furtherextensionofreaction time(16h)enhancesthehollowingeffect(Fig.5(g)and(h)),and thenumerousnanorodswithporesonsurfacesareassembledto nanospheres(Fig.5(h))duetothedissolutionand recrystalliza-tion(Fig.5(i)).Thehollowandporousnanospheresareformedas thereactiontimeis24h.However,thereemergeurchin-like struc-turescomprisingalargeamountofnanorodswithasmallnumber
ofnanoparticles(Fig.5(j))asthereactiontimeis30h(Fig.5(k)and (l)).Interestingly,mostofthenanoparticlesaredissolvedwhenthe
Trang 4Fig 2. SEM images of the pristine ZnO nanospheres taken at (a) low and (b) high magnification (c) and (d) Magnified SEM images of an open hollow and porous ZnO nanosphere SEM images of the Y-doped nanospheres taken at (e) low and (f) slightly higher magnification (g) Magnified SEM image of an open nanosphere in the Y-doped sample (h) SEM image of the nanoparticles.
reactiontimeisincreasedto35h,leavingbehindslimnanorods
(Fig 5(m)and (o)).Thedisappearanceof thenanospheres
sug-geststheimportantroleofthenanoparticlesinthestabilization
ofnanospheres(Fig.5(n))
Theseimplysuchamechanism:theOstwaldripening[48]
cou-pledwiththegrainrotationinduced graincoalescence(GRIGC)
[49] The Ostwald ripening involves the aggregation of nano-crystallites,followedbyanoutwardmasstransfertoformhollow structures.TheGRIGCprocessoccurswhenparticlescollide,and thegrainrotationtakesplacethereafter.Suchgrainrotation low-ers the energy of system and eliminates the grain boundaries, producing single-phase nanocrystals (i.e., coalescence process)
Fig 3. (a) TEM image of the Y-free ZnO sample, highlighting that the nanospheres are hollow (b) and (c) Enlarged TEM images of the Y-free ZnO nanospheres on edge (d) HRTEM image of a Y-doped ZnO nanosphere (e) TEM image of the Y-doped ZnO (f) and (g) Enlarged TEM images of the doped sample on edge (h) EDS for the pristine (upper) and doped (lower) ZnO nanomaterials The horizontal axis denotes the energy and the vertical one the counts (i.e., intensity) (i) Original area and EDS mapping of (j) O, (k)
Trang 5Fig 4. SEM image of the ZnO nanospheres prepared under different concentrations of monoethanolamine (MEA): (a) and (b) 0 mL, (c) and (d) 5 mL, (e) and (f) 15 mL, (g) and (h) 30 mL, (i) and (j) 40 mL, (k) and (l) 50 mL The amount of added ethanol is fixed to be 40 mL.
Fig 6 shows schematically formation evolution of the hollow,
porousnanospheres.Attheinitialstage,theZnOnanocrystalsare
generated randomly.Asthereactiontime isincreased,theZnO
colloids are aggregated to form solid nanospheres through the
Ostwaldripeningeffect,whichisdrivenbytheminimizationof sur-faceenergy.Sincecrystalliteshaveahighersurfaceenergyinthe interiorsthanonthesurfaces,theyaremorereadilytobedissolved Oncebeingheated,thenano-crystallitesareeasiertobecollided
Fig 5.SEM image illustrating evolution of morphology of the nanospheres with the reaction time: (a–c) 4 h, (d–f) 8 h, (g–i) 16 h, (j–l) 30 h, and (m–o) 35 h Three images
Trang 6Fig 6.Schematic illustration of morphology evolution of the ZnO nanospheres.
and rotated,givingrise tocoalescenceofneighboring grains to
formlargesingle-phasegrains.Sucha processlowersthe
inter-facialenergyassociatedwithlargeinterfacialarea.Forthepolar
ZnO,the(0001)planeis mostlikely tobecoalesceddue toits
highestenergyofallplanes,whichexplainstheobservationthat
ZnOcrystallitesaregrowninthe[0001]directiontoproducethe
rod-likeZnOintheshellofhollownanospheres.Meanwhile,the
rotationandmigrationofparticlesinducepores,whichresultsin
thehollowandporousmorphology
3.3 Resistanceasafunctionoftemperature
To gain more insights into surface properties of the
nanospheres,weshowinFig.7nitrogenadsorption–desorption
isothermandsizedistributionoftheporescalculatedusingthe
Barret–Joyner–Halenda(BJH)method.Carefulanalysisoftheplot
identifiestheisothermasatypeIVone,indicatingtheformation
of typicalporousstructure (Fig.7(a)) Although thepore spans
a largerange in size,themajority of poreshave a diameterof
5–15nm,inaccordwiththeaboveTEMobservations(Fig.7(b))
Thespecificsurfaceareaofthenanospheresreaches89.5m2g−1
measuredusingtheBET,confirmingtheporousnature.Itshould
benotedthatthespecificsurfaceareaofthenanoparticlesisonly
24.2m2g−1,whichindicatesthatthemorphologyaffectsgreatly
thespecificsurfacearea
Such a 3D hierarchicalporousnanostructure may hold
sub-stantialpromise for a wide range of applications,especially as
a chemical sensor owingtothe largespecificsurface areathat
cangreatlyenhancegasdiffusionandmasstransport.Extensive
efforthasbeendevotedtodatetoimprovinggas-sensing
prop-ertiesofZnO,includingthefastresponseandrecoveryandhigh
gasresponse Among them, the dopingof rare-earth elements,
e.g.,Y,hasbeendemonstratedasoneofeffectivewaystoactivate
hostmaterials,andmayenablefictionalizationofthehierarchical
nanospheresaswellforadvancedfunctionalgassensors
Totestthisscenario,wefirstpresentinFig.8(a)theresistance
(R)asafunctionoftemperature(T)forthesensorsfabricatedwith
theY-freeandY-dopednanospheresinairtogetherwiththe
sen-sormadeofpristineZnOnanoparticles(Fig.2(g)).Overallfeatureis
differentbetweensamplesandthesampledopedwith4%Yhasthe
lowestresistance.Theresistancedecreaseswithincreasingamount
ofY,butsuchadecreasecomestoahaltwhenthedoping
concen-trationofYisbeyond4%.Carre ˜noetal.reportedtheformationof
asecondphase,Sn2Y2O7,intheSnO2dopedwithasmallamount
ofY[50].Likewise,asimilarsecondphaseofZnYmOnmaybe
pro-ducedinoursampleswhenthedopingconcentrationislowerthan
4%.Thesecondphasehasalowresistance,providingconducting
channelsinthesampleandhenceloweringthecontactresistance
oftheZnOgrains.ThismayreducetheresistanceofZnOsample
However,whenthedopingconcentrationisabove4%,thedoped
YinZnOreachessaturation,formingY2O3precipitatesthatgrow
alongtheZnOgrainboundary.TheY2O3 hasahigherresistance
thanthematrix, thereby increasingthecontact resistance.This
consequentlysuppressesthedroppingofoverallresistance signif-icantly,thatis,theresistanceisincreased
AnotherkeyfeatureinFig.8(a)isthatresistancedropsinaless abruptmannerfortheY-doped(Y/Zn=4%)thanY-freeZnOatthe temperaturerangingfrom300to450◦C,whichcouldbeattributed
tothechemisorbedOonsurfaces.However,thereversiblereactions takeplaceamongOgas(gas),chemisorbedO(ads),andlatticeO (lat)withtheriseoftemperature[51]:
1O2+e−⇔O−ads, (5)
1
2O2+2e−⇔O2−ads, (6)
Theseconcludeintuitivelythatelectrontransferfrom semiconduc-tortoabsorbedOisresponsiblefortheincreaseofresistance.Ithas beenreportedthatpureZnOmaterialsexhibitn-type semiconduc-torcharacteristicsduetotheexistenceofoxygenvacancies[52] FromtheEDSanalysis,wefindthattheO/Znratiodecreasedfrom 67.7%(ZnO)to53.6%(4%Y-dopedZnO).Thefeweramountsof oxy-genandzincintheY-dopedZnOrevealtheincreaseofdefectswith theintroductionofYintheZnOnanospheres.Meanwhilethe asso-ciatedincreaseinlatticeconstantgivesrisetoincreasedintrinsic defects,e.g.,VO•,VO••,andO//i [53].Duringthehydrothermalprocess, defectscanbeproducedandfurtherenhancedbythedopingofY
intheZnOnanospheres.ItisworthnotingthatZnOhasa hexago-nalclose-packedlatticewitharelativelyopenstructureinwhich
Znatomsoccupyhalfofthetetrahedralsitesandallthe octahe-dralsitesareempty.Ingeneral,theoxygenvacancy(VO••)haslower formationenergythanthezincinterstitials(Zn••i ),resultingin Zn-richcompositionsintherealwurtziteZnO[52].Inthissense,the intrinsicdefectsandextrinsicdopantscanbeintroducedduring thefabrication.XualsopointedoutthattheO2moleculesinteract stronglywithoxygenvacanciesonthesurfaceofZnO[54].These implythattheYdopingcanincreasetheconcentrationofOvacancy andhenceabsorbmoreoxygenontheZnOsurface,whichasaresult increasestheconcentrationofO−
3.4 Gas-sensingperformance
Togain insightintogas-sensingpropertiesof theZnO nano-structures,wepresentinFig.8(b)gasresponsetoformaldehyde (HCHO)gasas afunctionof temperatureat50ppm.TheY-free nanospheresshowahighergasresponse(maximumvalueof47.4
at350◦C)thantheundopednanoparticles,indicatingthat mor-phologyiscriticaltotheenhancementofgas-sensingfunctionality Evidently,responseofZnOnanospheresisimprovedwiththe addi-tionofY.However,gasresponseissaturatedtoamaximumvalueof 65.7whentheYconcentrationreaches4%.Furtherincreaseinthe Y-dopingconcentrationresultsinanadverseeffect,i.e.,lowersthe gasresponse.TheY-dopednanosphereshavealoweroptimal tem-perature(300◦C)thantheY-freeones(350◦C).Theenhancement
Trang 7Fig 7.(a) Nitrogen adsorption–desorption isotherm and (b) corresponding pore size distribution of the ZnO hollow and porous nanospheres.
ofgas-sensingpropertiesbyYdopingcanbeunderstoodas
fol-lows.Inthepristinecase,theOmoleculesareadsorbedonsurfaces
andcaptureefromtheZnOsemiconductor,formingchemisorbed
Ospecies(Eqs.(7)–(10)).Suchprocessgivesrisetosurface
deple-tionlayers,whicheventuallyincreasesresistanceofthesamples
WhenbeingexposedtotheHCHO,theHCHOmoleculesreactwith
theadsorbedOonsurfacesinthefollowingmanner:
HCHO(gas)+2O−ads⇒CO2+H2O+2e− (11)
Thisprocessreleasesthetrappedelectronsbacktoconductionband
ofZnO,increasingtherebyconcentrationofcarriersinthe
semi-conductor[55,56].TheintroductionofYinducesoxygendefects
inZnO,increasesconcentrationofO−adsandhenceimprovesgas
response On the other hand, the low optimal operating
tem-peratureaftertheYdopingcanbeascribedtotheformationof
weaklybondedcomplexesZnYmOn.Thechemisorptionofoxygen
speciesdependsstronglyonthetemperatureandnatureof
mate-rial.TheO2ischemisorbedatlowtemperaturewhileO−andO2−
arechemisorbedathightemperature.SinceZnOisa
semiconduc-tor,oxygenabsorptionandelectrontransferareratherdifficultto
occuratroomtemperature.Thethermalactivationofthe
semicon-ductorisrequiredtoobservegasadsorptiononsurface.Thisiswhy
changeinresistanceisnotobservedwhentheZnOnanospheres
areexposedinthereducedgases.However,thelow-temperature
gasadsorptionbecomespossiblebytheYdopingduetothe
pres-enceoftheweaklybondedcomplexesZnYmOnontheZnOgrain
surface.TheabsorptionofoxygenionscanoccurontheZnO
sur-faceatroomtemperatureduetothehighconductingnatureofthe
ZnYmOn.Inthisrespect,theYactivatesreactionsofHCHOtothe
adsorbedOduetothespillovereffect[57–59],resultinginalower
optimaloperatingtemperature
Fig.9showsresponse–recoverycharacteristicsforthethree
sen-sorsfabricatedwiththepristinenanoparticles,Y-freeandY-doped
nanospheresatdifferentoperatingtemperatures.Six
representa-tivespeciesofvolatileorganiccompound(VOC)gasesarechosen
purposely,includingCH4,NH3,HCHO,CH3OH,CO,and(CH3)2CO
Thegasconcentrationisfixedto50ppm.Thevoltageisincreased
sharplywhen thetestgasis in,yetreturnstoits originalstate whengasisout.Thekeydifferenceamongthethreesamplesis thatthevoltageisincreasedinthemoststrikinglymannerforthe Y-dopedsample,verifyingagainthegas-responseenhancementby morphologyandYdoping.Moreover,theresponseandrecovery transientofthesesensorsissuperiortoHCHOthantotherestof thetestedVOCgases,especiallyintheY-dopedcase(Fig.9(a)–(c)) Uponcloserinspection,wefindthattheresponseandrecoverytime
is∼14and17sforthepristinenanoparticles,while∼10and12s fortheY-freenanospheres.Theyarefurthershortenedto∼4and
6sfortheY-dopednanospheres(Fig.9(d))
ToshedmorelightontheY-dopedsample,wefurthermeasure thegas-sensingpropertiesattheoptimaloperatingtemperatureof
300◦C,asshowninFig.10.Thegasresponseisincreased drasti-callyasthegasconcentrationisincreasedupto250ppm,yetina moregentlefashionastheconcentrationisincreasedfurther.The responseissaturatedat∼800ppm.Interestingly,thegasresponse
is increasedalmost linearlywhenthegas concentrationranges from10to100ppm(insetofFig.10(a)),implyingthattheY-doped ZnOnanomaterialworksevenatlowgasconcentration.Fig.10(b) showsgasresponseoftheY-dopedsensortothesixtypesofVOC gasesat50ppm.Theresultmadeclearisthattheresponsetothe HCHOreachesamaximumvalueof65.7butisnolargerthan16
toothergases.ThisimpliesthattheY-functionalizednanosphere canact asanefficientgas-sensingmaterialforon-site selective detectionof formaldehyde.Sincetheformaldehydehasa single aldehydeandhighreducibilityindetectinggases,theunsaturated
YionstendtoabsorbHCHOmolecules,formingcomplexspecies
ofY–HCHO[59].Simultaneously,theabsorboxygenonthesurface oxidizestheHCHOintoH2OandCO2,resultinginagood selectiv-itytoHCHOforthesensor.Fig.10(c)showsasingle-cycleresponse fortheY-dopedsensoratdifferentHCHOconcentrationsat300◦C Thevoltagesignal(i)isenlargedwiththeriseofHCHO concentra-tion,(ii)isstabilizedin4swhenthesensorisexposedintheHCHO atmosphere,and(iii)returnstooriginalstatein6soncethe sen-sorisexposedinair.Fig.10(d)presentsrepresentativereversible cyclesofthegasresponseinHCHO(50ppm),whereonecansee
Fig 8.(a) Sensor resistance of Y-free nanoparticles, Y-free and Y-doped nanospheres as a function of temperature in air (b) Response of the sensors fabricated with Y-free nanoparticles, Y-free and Y-doped nanospheres with various concentrations to HCHO of 50 ppm measured at temperatures from 200◦C to 500◦C Grain sizes of various ZnO
Trang 8Fig 9. Response–recovery characteristic for the sensors fabricated with (a) Y-free ZnO nanoparticles, (b) Y-free and (c) Y-doped ZnO nanospheres Six types of VOC gases,
CH 4 , NH 3 , HCHO, CH 3 OH, CO, and (CH 3 ) 2 OH, are chosen purposely The operation temperature for the sensors fabricated with the Y-free nanomaterials is 350◦C and that for the sensor fabricated with Y-doped nanomaterial 300◦C The concentration of the tested gas is fixed to be 50 ppm (d) Single-cycle response and recovery transients of the three sensors to the HCHO gas at 50 ppm.
Fig 10.(a) Gas response of the sensor made of Y-doped ZnO as a function of HCHO concentration operated at 300◦C The inset highlights sensing characteristic at low gas concentration (b) Gas response of the sensor made of Y-doped ZnO to the six types of gases of choice The concentration of each gas is fixed to be 50 ppm and the operating temperature is 300 ◦ C (c) Single-cycle response of the Y-doped ZnO to the HCHO gas at different concentrations at 300 ◦ C (d) Typical response and recovery characteristic of the sensor fabricated with the Y-doped ZnO to the HCHO gas of 50 ppm at 300 ◦ C A few representative cycles are shown only, demonstrating stability of the Y-doped sensor.
thattheresponseandrecoverycharacteristicsarereproducedwell
withnoremarkableattenuation.TheseimplythattheY-dopedZnO
nanospherescanimprovesignificantlygas-sensingperformances
Suchimprovementcannotberealizedforthenanoparticlesand
hencetheY-dopednanospheresshallholdsubstantialpromisefor
thedevelopmentofapracticalsensordevicefortheon-site
detec-tionoftheharmfulHCHOgas
4 Conclusions
WehavefabricatedsuccessfullynovelhollowandporousZnO
nanospheresviathesimpletemplate-freehydrothermaltechnique
inorganicsolution,andinvestigatedthegas-sensingfunctions.We
demonstratethattheratioofMEAinsolutioniscriticalto
mor-phologybecauseitfacilitatesformationofmetastablenanoparticle,
restrains the growth of nanorods, and serves as
fundamen-talbuilding blocks for nanospheres.Systematic microstructural
studies reveal a coupling of the Ostwald ripening with the
grain-rotation-induced grain coalescence growth mechanism whichisresponsiblefortheformationofthehollowandporous nanospheres.Suchhierarchicalnanospherespossessalarge spe-cificsurfaceareaandcanbefunctionalizedwithYforadvanced chemicalgas-sensingapplication.Gas-sensingperformancetothe HCHOisfoundtobeenhancedinthedopedsamplewiththeY con-centrationof4%.ThisworkindicatesthattheY-dopedhierarchical structuresrepresentanimportantstepforwardtoexploringthe novelgassensorsforfutureon-sitedetectionofharmfulgases
Acknowledgements
ThisworkwassupportedinpartbytheNationalNaturalScience
ofChina(51202302)andChinaPostdoctoralScienceFoundation (No.2012M511904).Z.W.appreciatesfinancialsupportsfromthe Grant-in-AidforYoungScientists(A)(grantno.24686069)andthe ChallengingExploratoryResearch(grantno.24656376)
Trang 9[1] J.H Lee, Gas sensors using hierarchical and hollow oxide nanostructures:
overview, Sensors and Actuators B 140 (2009) 319–336.
[2] H Zhang, Q Zhu, Y Zhang, Y Wang, L Zhao, B Yu, One-pot synthesis and
hier-archical assembly of hollow Cu 2 O microspheres with nanocrystals-composed
porous multishell and their gas-sensing properties, Advanced Functional
Mate-rials 17 (2007) 2766–2771.
[3] W Guo, T Liu, H Zhang, R Sun, Y Chen, W Zeng, Z Wang, Gas-sensing
per-formance enhancement in ZnO nanostructures by hierarchical morphology,
Sensors and Actuators B 166–167 (2012) 492–499.
[4] H Liang, H Zhang, J Hu, Y Guo, L Wan, C Bai, Pt hollow nanospheres: facile
synthesis and enhanced electrocatalysts, Angewandte Chemie International
Edition 43 (2004) 1540–1543.
[5] S.W Kim, M Kim, W.Y Lee, T Hyeon, Fabrication of hollow palladium spheres
and their successful application to the recyclable heterogeneous catalyst for
suzuki coupling reactions, Journal of the American Chemical Society 124 (2002)
7642–7643.
[6] Y Zhu, T Ikoma, N Hanagata, S Kaskel, Rattle-type Fe 3 O 4 @SiO 2 hollow
meso-porous spheres as carriers for drug delivery, Small 6 (2010) 471–478.
[7] W Wei, G Ma, G Hu, D Yu, T McLeish, Z Su, Z Shen, Preparation of hierarchical
hollow CaCO3 particles and the application as anticancer drug carrier, Journal
of the American Chemical Society 130 (2008) 15808–15810.
[8] D Grosso, C Boissiere, C Sanchez, Ultralow-dielectric-constant optical thin
films built from magnesium oxyfluoride vesicle-like hollow nanoparticles,
Nature Materials 6 (2007) 572–575.
[9] S.C Yang, D.J Yang, J Kim, J.M Hong, H.G Kim, I.D Kim, H Lee, hollow TiO 2
hemispheres obtained by colloidal templating for application in dye-sensitized
solar cells, Advanced Materials 20 (2008) 1059–1064.
[10] A Cao, J Hu, H Liang, L Wan, Self-assembled vanadium pentoxide (V 2 O 5 )
hol-low microspheres from nanorods and their application in lithium-ion batteries,
Angewandte Chemie International Edition 44 (2005) 4391–4395.
[11] X Lou, L Archer, Z Yang, Hollow micro-nanostructures: synthesis and
appli-cations, Advanced Materials 20 (2008) 3987–4019.
[12] P Sun, W Zhao, Y Cao, Y Guan, Y Sun, G Lu, Porous SnO 2 hierarchical
nanosheets: hydrothermal preparation, growth mechanism, and gas sensing
properties, CrystEngComm 13 (2011) 3718–3724.
[13] B Liu, H Zeng, Hollow ZnO microspheres with complex nanobuilding units,
Chemistry of Materials 19 (2007) 5824–5826.
[14] W Guo, T Liu, W Zeng, D Liu, Y Chen, Z Wang, Gas-sensing property
improve-ment of ZnO by hierarchical flower-like architecture, Materials Letters 65
(2011) 3384–3387.
[15] Z Wang, J Song, Piezoelectric nanogenerators based on zinc oxide nanowire
arrays, Science 312 (2006) 242–246.
[16] Y Xia, P Yang, Y Sun, Y Wu, B Mayers, B Gates, Y Yin, F Kim, Y Yan,
One-dimensional nanostructures: synthesis characterization, and applications,
Advanced Materials 15 (2003) 353–389.
[17] J Huang, A Tao, S Connor, R He, P Yang, A general method for assembling
single colloidal particle lines, Nano Letters 6 (2006) 524–529.
[18] V Shinde, T Gujar, C Lokhande, Enhanced response of porous ZnO nanobeads
towards LPG: effect of Pd sensitization, Sensors and Actuators B 123 (2007)
701–706.
[19] X Liu, J Zhang, L Wang, T Yang, X Guo, S Wu, S Wang, 3D hierarchically
porous ZnO structures and their functionalization by Au nanoparticles for gas
sensors, Journal of Materials Chemistry 21 (2011) 349–356.
[20] Y Zeng, Z Lou, L Wang, B Zou, T Zhang, W Zheng, G Zou, Enhanced ammonia
sensing performances of Pd-sensitized flowerlike ZnO nanostructure, Sensors
and Actuators B 156 (2011) 395–400.
[21] X Xue, Z Chen, L Xing, C Ma, Y Chen, T Wang, One-Step Synthesis, Gas-Sensing
Characteristics of Uniformly Loaded Pt@SnO 2 Nanorods, The Journal of Physical
Chemistry C 114 (2010) 18607–18611.
[22] L Peng, P Qin, Q Zeng, H Song, M Lei, J.N Mwangi, D Wang, T Xie,
Improvement of formaldehyde sensitivity of ZnO nanorods by modifying with
Ru(dcbpy) 2 (NCS), Sensors and Actuators B 160 (2011) 39–45.
[23] N Han, X Wu, D Zhang, G Shen, H Liu, Y Chen, CdO activated Sn-doped ZnO
for highly sensitive selective and stable formaldehyde, Sensors and Actuators
B 152 (2011) 324–329.
[24] S Kim, M Kim, W Lee, T Hyeon, Fabrication of hollow palladium spheres
and their successful application as the recyclable heterogeneous catalyst for
suzuki coupling reactions, Journal of the American Chemical Society 124 (2002)
7642–7643.
[25] F Caruso, R Caruso, H Mohwald, Nanoengineering of inorganic and hybrid
hollow spheres by colloidal templating, Science 282 (1998) 1111–1114.
[26] M Yang, J Ma, C Zhang, Z Yang, Y Lu, Janus colloids derived by bi-phasic
graft-ing at pickering emulsion interface, Angewandte Chemie International Edition
44 (2005) 6727–6730.
[27] J Gao, B Zhang, X Zhang, B Xu, Magnetic-dipolar-interaction-induced
self-assembly affords wires of hollow nanocrystals of cobalt selenide, Angewandte
Chemie International Edition 45 (2006) 1220–1223.
[28] C.I Zoldesi, A Imhof, Synthesis of monodisperse colloidal spheres capsules,
and microballoons by emulsion templating, Advanced Materials 17 (2005)
924–928.
[29] Q Peng, Y Dong, Y Li, Cu 2 O hollow spheres with a single-crystalline shell wall,
Angewandte Chemie International Edition 42 (2003) 3027–3030.
[30] R Penn, J Banfield, Imperfect oriented attachment: dislocation generation in
defect-free nanocrystal, Science 281 (1998) 969–971.
[31] D Yu, X Sun, J Zou, Z Wang, F Wang, K Tang, Oriented assembly of Fe 3 O 4 nanoparticles into monodisperse hollow single-crystal microspheres, The Jour-nal of Physical Chemistry B 110 (2006) 21667–21671.
[32] Y Chang, J Teo, H Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu 2 O nanospheres, Langmuir 21 (2005) 1074–1079.
[33] B Liu, H Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors, Small 1 (2005) 566–571.
[34] B.P Jia, L Gao, Morphological transformation of Fe 3 O 4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field, The Journal of Physical Chemistry C 112 (2008) 666–671.
[35] X Liang, X Wang, Y Zhuang, B Xu, S Kuang, Y Li, Formation of CeO 2 - ZrO 2 solid solution nanocages with controllable structures via Kirkendall effect, Journal
of the American Chemical Society 130 (2008) 2736–2737.
[36] Y Yin, R Rioux, C Erdonmez, S Hughes, G Somorjai, A Alivisatos, Formation
of hollow nanocrystals through the nanoscale Kirkendall effect, Science 304 (2004) 711–714.
[37] Y Xiong, B Wiley, J Chen, Z Li, Y Yin, Y Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon proper-ties, Angewandte Chemie International Edition 44 (2005) 7913–7917 [38] X Lou, Y Wang, C Yuan, J Lee, L Archer, Template-free synthesis of SnO 2 hollow nanostructures with high lithium storage capacity, Advanced Materials
18 (2006) 2325–2329.
[39] F Li, Y Ding, P Gao, X Xin, Z Wang, Single-crystal hexagonal disks and rings
of ZnO: low-temperature large-scale synthesis and growth mechanism, Ange-wandte Chemie International Edition 43 (2004) 5238–5242.
[40] Z Miao, Y Wu, X Zhang, Z Liu, B Han, K Ding, G An, Large-scale production of self-assembled SnO 2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas, Journal of Materials Chemistry 17 (2007) 1791–1796.
[41] S Ho, A Wong, G Ho, Controllable porosity of monodispersed tin oxide nanospheres via an additive-free chemical route, Crystal Growth and Design
9 (2009) 732–736.
[42] G Korotcenkov, V Brinzari, I Boris, (Cu, Fe, Co or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology, Journal of Materials Science 43 (2008) 2761–2770.
[43] X Sun, X Qiu, L Li, G Li, ZnO twin-cones: synthesis photoluminescence, and catalytic decomposition of ammonium perchlorate, Inorganic Chemistry 47 (2008) 4146–4152.
[44] W Li, E Shi, W Zhong, Z Yin, Growth mechanism and growth habit of oxide crystals, Crystal Growth and Design 203 (1999) 186–196.
[45] X Wang, Q Zhang, Q Wan, G Dai, C Zhou, B Zou, Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity, The Journal of Physical Chemistry C 115 (2011) 2769–2775.
[46] L Xu, Y Hu, C Pelligra, C Chen, L Jin, H Huang, S Sithambaram, M Aindow, R Joesten, S Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chemistry of Materials 21 (2009) 2875–2885.
[47] P Hu, X Zhang, N Han, W Xiang, Y Cao, F Yuan, Solution-controlled self-assembly of ZnO nanorods into hollow microspheres, Crystal Growth and Design 11 (2011) 1520–1526.
[48] M Niederberger, H Cölfen, Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly, Physical Chemistry Chemical Physics 8 (2006) 3271–3287.
[49] E.R Leite, T.R Giraldi, F.M Pontes, E Longo, A Beltrán, J Andrés, Crystal growth
in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Applied Physics Letters 83 (2003) 1566–1568.
[50] N Carre ˜ no, A Maciel, E Leite, P Lisboa-Filho, E Longo, A Valentini, L Probst, C Paiva-Santos, W Schreiner, The influence of cation segregation on the methanol decomposition on nanostructured SnO 2 , Sensors and Actuators B 86 (2002) 185–192.
[51] W Zeng, T Liu, Z Wang, Enhanced gas sensing properties by SnO 2 nanosphere functionalized TiO 2 nanobelts, Journal of Materials Chemistry 22 (2012) 3544–3548.
[52] C Kung, S Young, H Chen, M Kao, L Horng, Y Shih, C Lin, T Lin, C Ou, Influence of Y-doped induced defects on the optical and magnetic properties
of ZnO nanorod arrays prepared by low-temperature hydrothermal process, Nanoscale Research Letters 7 (2012) 372–377.
[53] A Janotti, C.G Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics 72 (2009) 126501–126529.
[54] A Gurlo, Interplay between O 2 and SnO 2 : oxygen ionosorption and spectro-scopic evidence for adsorbed oxygen, ChemPhysChem 7 (2006) 2041–2052 [55] M Batzill, U Diebold, Surface studies of gas sensing metal oxides, Physical Chemistry Chemical Physics 9 (2007) 2307–2318.
[56] M Kung, R Davis, H Kung, Understanding Au-catalyzed low-temperature
CO oxidation, The Journal of Physical Chemistry C 111 (2007) 11767–11775.
[57] R Joshi, Q Hu, F Am, N Joshi, A Kumar, Au decorated zinc oxide nanowires for
CO sensing, The Journal of Physical Chemistry C 113 (2009) 16199–16202 [58] Q Xiang, G Meng, H Zhao, Y Zhang, H Li, W Ma, J Xu, Au nanoparticle modi-fied WO 3 nanorods with their enhanced properties for photocatalysis and gas sensing, The Journal of Physical Chemistry C 114 (2010) 2049–2055 [59] S Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators B
12 (1987) 425–440.
Trang 10Weiwei Guois currently a PhD candidate at the College of Materials Science and
Engineering, Chongqing University in China He is now engaged in the synthesis
and characterization of the semiconducting materials and in the investigation of
their gas sensing properties.
Tianmo Liuis a professor of College of Materials Science and Engineering at
Chongqing University in China since 2001 He received Dr Eng from Department
of Solid Mechanics, Chongqing University in 1999 His current research interest
involves functional materials for gas sensors and magnesium alloys He is now also
holding a group leader position at the National Engineering Research Center for
Magnesium Alloys at Chongqing University.
Rong Sunis currently a PhD candidate in the Institute of Engineering Innovation,
The University of Tokyo in Japan Her research interest involves the characterization
of materials using advanced transmission electron microscopy.
Yong Chenis currently a PhD candidate at the College of Materials Science and Engineering, Chongqing University in China, and also an exchange student at Tohoku University in Japan since 2011 He is now engaged in fabricating nanomaterials and
in characterization using advanced transmission electron microscopy.
Wen Zengreceived his PhD degree in material Science from Chongqing University in China He is currently a lecture at the College of Materials Science and Engineering, Chongqing University He is focusing on synthesis of low-dimensional functional materials, on fabrication of semiconducting sensors and on first-principles calcula-tions.
Zhongchang Wangis currently an assistant professor at the WPI Research Center, Advanced Institute for Materials Research, Tohoku University in Japan He received his master degree in 2004 from Chongqing University in China and PhD in 2008 from the University of Tokyo in Japan He is now mainly focusing on gas-sensing materials, interfaces, grain boundaries, dislocations in oxides, and quantum electron transport by combining the state-of-the-art transmission electron microscopy with the first-principles calculations.