1. Trang chủ
  2. » Giáo án - Bài giảng

highly active photocatalytic zno nanocrystalline rods supported on polymer fiber

6 270 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,23 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Aqueous hydrothermal techniques for ZnO nanorod crys-tal growthcan proceedrapidly atrelatively mild temperatures... 2.Scanning electron microscopy images of silicon wafers after ZnO hydr

Trang 1

Applied Catalysis A: General

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / a p c a t a

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA

Article history:

Received 29 March 2011

Received in revised form 26 August 2011

Accepted 28 August 2011

Available online 3 September 2011

Keywords:

Atomic layer deposition

Nonwoven fiber

Diethyl zinc

Zinc oxide

Nanocrystals

Nanorods

Hydrothermal

Photocatalytic

a b s t r a c t Photocatalyticallyactivezincoxidenanocrystallinerodsaregrownonhighsurfaceareapolybutylene terephthalate(PBT)polymerfibermatsusinglowtemperaturesolutionbasedmethods,wheretheoxide crystalnucleationisfacilitatedusingconformalthinfilmsformedbylowtemperaturevapor phase atomiclayerdeposition(ALD).Scanningelectronmicroscopy(SEM)confirmsthathighlyoriented sin-glecrystalZnOnanorodcrystalsaredirectednormaltothestartingfibersubstratesurface,andthe extentofnanocrystalgrowthwithinthefibermatbulkisaffectedbytheoverallthicknessoftheZnO nucleationlayer.Thehighsurfaceareaofthenanocrystal-coatedfibersisconfirmedbynitrogen adsorp-tion/desorptionanalysis.Anorganicdyeinaqueoussolutionincontactwiththecoatedfiberdegraded rapidlyuponultravioletlightexposure,allowingquantitativeanalysisofthephotocatalyticpropertiesof fiberswithandwithoutnanorodcrystalspresent.Thedyedegradesnearlytwiceasfastincontactwith theZnOnanorodcrystalscomparedwithsampleswithonlyanALDZnOlayer.Additionally,thecatalyst

onthepolymerfibermatcouldbereusedwithoutneedforaparticlerecoverystep.Thiscombinationof ALDandhydrothermalprocessescouldproducehighsurfaceareafinishesoncomplexpolymersubstrates forreusablephotocatalyticandothersurface-reactionapplications

© 2011 Elsevier B.V All rights reserved

The large band gap and strong exciton binding energy of

zinc oxidemake it a valuable semiconductor for many

micro-electronic and optoelectronic devices including solar cells [1],

photo-detectors [2]and light emittingdiodes[3,4].In addition,

ZnOisoneofmanynaturallyoxygendeficientmetaloxidesthat

willphotocatalyticallydecomposecomplexorganicmoleculesin

thepresenceofUVillumination[5–7].NanostructuredZnO

crys-talsareparticularlyinterestingforphotocatalysisbecauseoftheir

highsurfaceareawhichincreasesthecrystal/solutioncontactarea

Recently,researchershavedefinedmethodstocreatecrystalline

ZnOnanowires[1,8,9],nanorods[10],nanotubes[11],nanobelts

[12,13],nanotowers[14],dendritichierarchicalstructures[15]and

an assortment of other structures [16] However, few of these

studiesaddressedissuesinphotocatalysis.Oneproblemwith

free-standingZnOnanostructuresisthattheycouldreadilyaggregate

inaqueoussolution.Itisalsoachallengetorecycleandregenerate

thesenanostructuresfromthesolution.Catalyticallyactive

parti-cleswithmagneticattractionshowsomepromiseinthisregard

[17].AnotherpromisingapproachistoattachZnOnanostructures

ontoathree-dimensional(3D)highsurfaceareasupport.Polymer

∗ Corresponding author.

E-mail address: parsons@ncsu.edu (G.N Parsons).

fibermatsareespeciallyattractiveassupportsbecausetheyare inexpensive,readilyavailable,and theyareflexible andeasy to use

Aqueous hydrothermal techniques for ZnO nanorod crys-tal growthcan proceedrapidly atrelatively mild temperatures (<150◦C),andtheprocessingpermitssurface-selectivegrowththat drivesnanostructureevolution[18].Formosthydrothermal meth-ods,anoxideseedlayerisessentialtoinitiateandcontinuecrystal evolution.Theseedlayerpresentsnucleationsites,loweringthe thermodynamicbarrierforZnOnano-and micro-crystalgrowth andfurtherenhancingthegrowthdirectionselectivityandaspect ratio[14,15].Previousresearchersformnucleationsitesby apply-ing ZnO particlesor a nanocrystalline filmby dipcoating,spin coating [15] orsputtering [19].These approaches canworkfor depositiononplanarsurfaces,butforcomplex3Dsubstrates,these methodsarenotexpectedtoyielduniformseedlayersand homo-geneousseedlayerdistribution

Atomiclayerdeposition(ALD)isavaporphasethinfilm deposi-tiontechniquewhichcandepositmaterialsuniformlyoncomplex 3Dsurfaces.IntheALDprocess,twoco-reactants(e.g.diethylzinc andwaterforZnO formation)areintroducedontothesubstrate alternatively, separatedbyaninertgaspurgestep,allowingthe surfacetoreactwitheachreagentinaseriesofself-limiting adsorp-tion/reactionsteps[16,20–23].Repeatingthissequencebuildsupa coatingwithdesiredthicknessonthesubstrate.Severalresearch groups recently showedthat this process yields uniformmetal

0926-860X/$ – see front matter © 2011 Elsevier B.V All rights reserved.

Trang 2

212 B Gong et al / Applied Catalysis A: General407 (2011) 211– 216

Fig 1. Schematic view of the viscous flow ALD reactor used for these studies In

one ALD cycle, two co-reactants (e.g diethyl zinc and water for ZnO formation) are

introduced alternatively, with an inert gas purge step in between, allowing

forma-tion of one atomic layer of ZnO Desired thickness could be achieved by repeating

the ALD cycles.

oxidethin filmcoatingsonhighaspectratiopolymerfiber

sub-strates[20–26].Someofthesereportsalsoshowphotocatalytic

performanceoftheresultingpolymer/oxidestructures[24,25].For

thisstudy,weshowthattheALDcoatingprovidesanidealseed

layerforhydrothermal growthofZnO nanorodcrystalsonfiber

substrates,andthatthesenanocrystal-coatedfibersshowhigh

pho-tocatalyticactivitycomparedtopreviousstructures

Inparticular,wedescribeanALDprocesstodepositathinlayer

ofZnOontoa polybutyleneterephthalate(PBT)nonwovenfiber

mat,wheretheZnOlayeristhenusedasaseedlayerforlow

tem-peratureZnOnanorodhydrothermalgrowth[16].Thissequence

creates a hierarchical fiber/nanorod crystal composition with

surface-normalZnOnanorodsonthecylindricalfibertemplate.The

finalfibercross-sectionwasimagedandphysicallycharacterized,

andthephotocatalyticpropertiesofthefiber/nanorod

construc-tionweretestedandcomparedtouncoatedfibersandtofibers

uniformlycoated withZnO ALD (i.e.without thehydrothermal

growthstep).Thehierarchicalstructureshowssuperior

photocat-alyticperformance,consistentwiththeexpectedenhancedsurface

area

2.1 ZnOseedlayerdepositionbyALD

ThesubstrateforZnOnanocrystalgrowthwasamultilayered

nonwovenPBTfibermatacquiredfromtheNonwovenCooperative

ResearchCenter(NCRC)atNCStateUniversity.Electronmicroscopy

imagesofthePBTmatsshowedthattheywereamassofindividual

fibers(2–3␮mindiameter)withatotalmatthicknessof∼0.5mm

[27].WemonitoredALDgrowthbydepositingsimultaneouslyonto

polishedsiliconwaferpieces.Fig.1displaysaschematicdrawingof

thehomemadeviscousflowhotwallvacuumreactorusedforzinc

oxideALD[28].Thereactionsystemiscomposedofstainlesssteel

tube∼3.5cmindiameter,surroundedbyaheatingjacketto

con-trolthereactortemperature(100◦Cforthesestudies).Thecarrier

gaswasultrahigh-purityAr(99.999%NationalWelders)flowing

at∼200standardcubiccentimetersperminute(sccm).The

reac-tionsystemwaspumpedusinga rotarymechanical pump,and

thesteady-stateprocesspressurewas∼1.0Torr,asmonitoredbya

Baratronpressuregauge(MKSInstrumentInc.).OneZnOALDcycle

consistedofa2sexposuretodiethylzinc(DEZ,98%Strem

Chemi-cal)followedbya60sArpurge,a2swaterexposure,andanother

60sArpurge(thesequenceisdenotedas2/60/2/60s).Thereactant

pulseproducedapressureincreaseof50mTorrinthereactor.The

seedlayersweredepositedusingeither100or200ZnO

deposi-tioncycles,whichproduce∼20or40nmthickfilms,respectively,

onplanarsiliconsubstrates.Refractiveindexandfilmthickness

onsiliconwasmeasuredbyvariable-anglealpha-SEspectroscopic

ellipsometry(J.A.WoollamCo.,Inc.)

2.2 HydrothermalgrowthofZnOnanorodcrystalsonseedlayer AfterALDcoating,thePBTfibersandsiliconcontrolwaferwere transferredintoateflonvesselcontaining30mlaqueoussolutionof equimolar(20mM)zincnitratehexahydrate(Zn(NO3)2·6H2O,99% Aldrich)andhexamethylenetetramine(C6H12N4,99%Aldrich).The vesselwasleftopenandheldinanovenat80◦Cfor6hresulting

inthegrowthofZnOnanorodcrystalsontheZnOcoatedsilicon andPBTsubstrates.Thesiliconwaferwasheldface-downinthe solutiontopreventtheprecipitationofanyZnOparticlesthatmay haveformedinthesolutionbulk.Aftergrowth,thePBTfibermat andSiwaferwererinsedwithdeionizedwaterfor2min,andthen driedinN2 flowatroomtemperature.Seedlayerthicknessesof

∼20and40nmwereinvestigated

2.3 Microscopyandsurfaceanalysis Themicrostructureofthemodifiedfiberswasanalyzedusing

anFEIXL30ScanningElectronMicroscope(SEM)operatingat7kV withaworkingdistanceof5mm.BeforeSEMimaging, samples sputter-coated with5nm of Au/Pd to reduce surface charging TransmissionElectronMicroscope(TEM)imagesofZnOnanorod crystalsonpolymerfibermatswerecollectedusingaHitachiHF coldfieldemissionTEMoperatedat200kVwith0.2nmpoint res-olution.TheTEMsampleswerepreparedbyheatingthetreated fiberat400◦Cinairfor24h,resultingincalcinationofthe poly-mer.Aftercalcination,theresultingmaterialsweredispersedin methanol,sonicatedfor1min,andthentransferredbypipetteonto carbonfilm-coatedTEMgrids(TedPella,Inc.)

Thestaticwatercontactangleonthestartingandmodified sur-faceswascollectedusinga Model200RameHartcontactangle goniometerequippedwithaCCDcamera.Wemeasuredatleastfive differentpointsoneachsampleandtheaveragevalueisreported

AQuantachromeAutosorb-1Csurfaceareaandporesize ana-lyzerprovidedinformationontheBrunauerEmmettTeller(BET) surfaceareaofthematerialsbeforeandafterprocessing.Before eachanalysis,sampleswereheatedundervacuumat100◦Cforat least4htoremoveresidualandmoistureadsorbed.Therecorded datawascollectedfrom∼200mgsamplesusingasevenpointBET (P/P0rangefrom0.05to0.35)analysis

2.4 Photocatalyticcharacterization FibersampleswithZnO ALD coating,ZnO coatingwith sub-sequenthydrothermalnanocrystalgrowth,aswellasuntreated fiberswereallcutintouniformsamplepieces(1.8cm×1.8cm)and placedintothreeglassvials,eachcontaining25mlofdeionized waterwithequalconcentrations(3×10−4vol.%)ofcommercially availableazoacidred40dye.Wethenexposedthevial(uncapped)

to UV radiation froma shuttered Intell-Ray 400Uvitron Inter-national UV floodlight (320–390nm) providing 79mW/cm2 of energyfluximpingingfromthetop.Theincidentpowerdensity wasdeterminedusinga1916-CNewportopticalpowermeter.By monitoringtheconcentrationofthedyeinthevesselbyUV–vis absorbance(measuredbyaThermoScientificEvolution300 UV-Visspectrophotometer) asa function of time, we wereable to quantifytherelativerateofdyedegradationand henceanalyze theeffectivephotocatalyticactivityofthedifferentprepared sam-ples

Fig.2presentsSEMimagesofsiliconwafersafter hydrother-malZnOnanorodcrystalgrowth.Thesampleinpanels(a)and(b)

ispreparedbyhydrothermalgrowthdirectlyonthesiliconwafer

Trang 3

Fig 2.Scanning electron microscopy images of silicon wafers after ZnO hydrothermal growth Images (a) and (b) were collected from samples without an ALD ZnO nucleation layer Alternatively, images (c) and (d) were from silicon samples that were coated with 100 cycles of ALD ZnO before hydrothermal ZnO nanorod crystal growth.

(i.e.withouttheZnOALD seedlayer),andtheimagesinpanels

(c)and(d)werecollectedfromasiliconwaferwiththeALDZnO

seedlayer.Withouttheseedlayer,onlysmallamountofsparsely

distributedZnOnanocrystalsarepresent.Theyarealsorelatively

large(∼1␮mindiameterand∼3–5␮mlong).Whenthesubstrate

is pre-coatedwith100ZnOALD cycles(producinga seedlayer

∼20nmthick,asdeterminedbyellipsometry),thehydrothermal

growthstepyieldscompletecoverageofZnOnanorodcrystalswith

uniformsizeof∼50nmdiameterand∼500nmlong.Wealsonote

thatthenanorodsshowpredominantlysurface-normalorientation,

whereasmorerandomorientationisproducedwithouttheseed

layer.TheALDZnOprovidesagoodseedlayerforthe

hydrother-malgrowthofZnOnanocrystals.ThedetailedALDconditioncould

changethesurfaceroughnessofthePBTfibermat,andfurtheraffect

themorphologyofcoatedZnOnanorods

TheeffectsofZnOALDseedingwerealsotestedonpolymerfiber

mat.Fig.3presentsSEMimagesofPBTnonwovenfibermatsafter

ZnOnanorodcrystalgrowth.ForthebarePBTfibermat,theimages

inFig.3(a)and(b)showonlysparseandrelativelylargeZnO

clus-ters,similartogrowthonuntreatedsiliconwafer.Fig.3(c)and(d)

showsaPBTfibermatafter20nm(100cycles)ofALDZnOfollowed

byhydrothermalgrowth.Interestingly,ZnOnanocrystalsonlygrow

ontheoutersurfaceofthesubstratemat,andfibersinthemiddle

layersofthesubstrateshowalmostnonanocrystalgrowth.This

non-uniformityisparticularlyvisibleinFig.3(d),inwhichfibersat

thetopofthematappeartohaveamuchlargerdiameterbecause

ofthenanorodcrystals

To understand this non-uniformity in nanorod growth, we

examinedwaterdropletcontactangleandwaterpenetrationinto

thenonwovenfibermataftertheALDcoating[22].Asreceived,the

PBTfibersappearhydrophobic.Awaterdropletplacedonthefiber

matdidnotabsorbandtheaveragestaticwatercontactanglewas

∼120◦.Aftercoatingthematwith100cyclesofZnOALD,water

stilldidnotreadilypenetrate,andthecontactanglewas∼100◦.

We believethatthehydrophobicnatureofthecoatedPBTfiber matlimitsthepenetrationoftheaqueoushydrothermalprocess solutionintothemat,resultinginhydrothermalgrowthprimarily

ontheouterfibers,asshowninFig.3(c)and(d).Wefind,however, thatafter200cyclesofZnOALD,thePBTfibermatbecame com-pletelywetting(contactangle∼0◦),whichwillreadilyallowthe

aqueoushydrothermalsolutiontopenetrateintothematrix.This wettingtransitionforALDcoatedpolymerfibershasbeen previ-ouslyobserved,anditisunderstoodtoresultfromacombination

ofchangesinsurfacechemicalterminationandsurfaceroughness [22].AsdemonstratedinFig.3(e)and(f)PBTfibersamplescoated with200cyclesALDZnOasaseedlayeryieldedauniformcoating

ofZnOnanorodcrystalsdeeperintothefibermat.Severalsample fibersextractedatrandomfromthebulkofthematwereexamined

bySEM,andallshowedgoodcoverageofZnOnanocrystalsafterthe hydrothermalgrowthwithsmallvariationinnumberanddensity

ofthecrystallites

HighresolutionTEMimagespresentedinFig.4shownanorod crystals grownonPBT usingthe 200cyclesZnO ALD seed lay-ers The PBT fiber has been removed by a calcination step at

400◦C for 24h Fig 4(a) clearly shows both the oriented ZnO nanorod crystals and the ZnO shell layer The lattice fringe spacing of ∼0.32nm measured in Fig 4(b) confirms the ZnO wurtzite structure The hydrothermal process likely produces zincite [29] which transforms to wurtzite during the relative hightemperaturecalcinationstep.Theparticularsampleshown

in Fig 4 reveals a smaller number of nanocrystals This could result from damage during sonication for the TEM sample

Trang 4

214 B Gong et al / Applied Catalysis A: General407 (2011) 211– 216

Fig 3. Scanning electron micrographs obtained from: (a) and (b) untreated PBT fibers after hydrothermal ZnO nanorod crystal growth; (c) and (d) PBT fibers after 100 ALD cycles of ZnO (∼20 nm thick), followed by hydrothermal ZnO nanorod growth Nanorod crystals are visible primarily on the top-most fibers in the fiber mat Panels (e) and (f) show PBT fibers after 200 cycles (∼40 nm) of ALD ZnO, followed by ZnO nanorod growth Nanorod growth is visible on all the fibers In panel (b) a circle highlights a large crystal, similar in size to the one shown in Fig 2 (b), formed on the untreated fiber.

preparation,orsomenon-uniformityinthehydrothermalgrowth

step

ThesurfaceareaiscriticalforthecatalyticperformanceofZnO

structures.TheBETsurfaceareameasuredbynitrogenadsorption/

desorptionanalysiswas∼0.73m2/gfortheuntreatedPBTfibermat, withafactorof2–3increaseinsurfaceareato∼1.79m2/g,afterthe ZnOseedlayerandhydrothermalgrowth.Thisincreaseisrather modestonapermassbasis.However,wenotethatafter

hydrother-Fig 4.Transmission electron microscopy images obtained from ZnO nanorod crystals on PBT fibers where the polymer was removed by calcination before imaging In image (a), the nanorods are visible protruding from the ZnO thin film layer that remains after calcination The arrow on the left in image (a) points to a region of ALD ZnO coating without nanorod crystal growth The image in (b) was collected from the tip of a nanocrystal rod, as indicated by the region circled in (a) The HRTEM image shows the lattice

Trang 5

Fig 5.Normalized absorbance of organic dye at 525 nm plotted versus UV radiation

exposure time PBT fiber substrates with various surface treatments were immersed

in the aqueous solution containing the azo dye (acid red 40), and illuminated using a

UV lamp The fibers with ALD ZnO and ZnO nanorod crystals produced the most rapid

photocatalytic dye degradation The inset shows a photograph of the dye solutions

in contact with the different substrates after 2 h of illumination The red dye is nearly

completely removed from the solution in contact with the nanorod-coated fibers.

malgrowth,thenetmass(percm2offibermatsample)increased

byafactoroffourcomparedtothesamplewithALDZnOcoating,

whichverifiesasignificantamountofhydrothermalZnO

deposi-tion.Theincreaseinmass,combinedwithanincreaseinsurface

areaperunitmassbasismeansthatonapersamplebasis(i.e.for

afixedfibermatsamplesize),thesurfaceareaofthefibermat

increasesbyatleastafactorof10comparedtothestartingsample

Anevenlargerincreaseinsurfaceareacouldbeexpectedifafiber

matsupportwithfinerfiberswasused,orifthinnerand/orlonger

nanorodscouldbegrown.Thedensityandporosityofthefibermat

alsolikelyplayaroleindeterminingtheoptimumconditionsto

achieveuniformnanocrystalgrowthandhighsurfacearea

Anorganicdyeinaqueoussolutionwasusedtotestthe

pho-tocatalyticperformanceofZnOfunctionalizedPBTfibermats.The

photocatalyticdecompositionoforganicmaterialsinaqueous

solu-tionis generally believedto beinitiatedby photo-excitationof

ZnO,producing hydroxylradicalsand holeswithhighoxidative

potential,permittingrapidoxidationoforganicsincontactwith

the surface [5,7] Fig 5 shows the photocatalytic performance

ofZnO treatedfibermatsampleswheretheUV–visabsorbance

measured at 525nm, normalized to the starting absorbance of

each dye solution sample, is plotted versus UV exposuretime

Upon UV irradiation,the dyedegraded in allsample vials, but

thesamplevialcontainingthenanocrystal-coatedfibersin

con-tactwiththesolutionshowedasubstantiallyfasterdegradation

ratecomparedwiththeothersamples.Inaddition,weperformed

acontrolexperimentwithoutUVexposurewhereasimilarsized

nanocrystal-coatedPBTfibermatwasplacedintothedyesolution

andkeptindarkfor2h.Asexpected,negligibleUV–visabsorbance

changewasobservedfromthedyesolution,whichconfirmedthat

thedecomposition is photocatalytic.Additionally, dyesolutions

withandwithouttheuntreatedPBTfibermatshowedonly

lim-itedabsorbancechangeunderUVexposure,confirmingthatthe

fibersthemselvesdonotleadtodyedegradation[30].However,we

findthattheconformalZnOcoatingonthefibers(withoutnanorod

growth)issufficienttocatalyzesomeUVdegradationofthedye

Theinsetincludesimagesofthree solutionvials aftera totalof

2hUVexposure.ThevialcontainingthecontrolPBTfibershows

littledegradation,andthevialwithALD ZnOcoatedPBTshows

improveddegradationcomparedtothevialwiththeuncoatedPBT

substrate.ThevialcontainingthePBTwithALDZnOandnanorod

crystalsshowedthebestperformance,degrading∼90%ofthedye

Fig 6.Reusability of ZnO treated PBT fiber mat for photocatalytic dye degradation For the PBT fiber mats coated with ALD ZnO and with ALD ZnO + nanorods both showed repeatable photocatalytic degradation performance over three consecutive 2-h exposure runs The slight decrease in photocatalytic efficiency for each sample

is ascribed to surface contamination that accumulated during testing.

within2h.Thissuperiorperformanceisascribedtothelarger solu-tion/photocatalystcontactareafortheALD/hydrothermalprepared materials

ThereusabilityoftheZnOcoatedPBTfibermatsfor photocat-alytic dyedecompositionwasalsotested.Fig.6 displaysresults

ofthreedegradationtestsperformedinsequenceusingALD ZnO-coatedPBTfibers,andusingsimilarsamplescoatedfurtherwith ZnO nanorods.bothtypesofsamplesshowedrepeatable photo-catalyticactivitytowardsaciddyedegradation,whereagain,the sampleswithnanorodsshowmorerapiddyedissociation.Wenote thataftereachrun,samplesweretransferreddirectlyintoafresh fluidsamplewithoutsurfacecleaningorothertreatment,sothe decreasedreactionrateduringthesecondandthirdrunsislikely duetosurfacecontaminationaccumulatedduringtheprevioustest

Wealsoperformedside-by-sidecomparisonsofthesame mate-rialsetsusingsunlightilluminationinplaceofthelaboratoryUV lamp.While degradationundersunlightwaslessrapidthanfor theUV lamp,theexperimentproduced thesametrendin pho-tocatalyticperformance.Thefiberswithnanorodcrystalspresent showed substantially more degradation with the same expo-suretime TheintegratedALD/hydrothermaldepositionmethod describedheredemonstratedanefficientwaytofurtherimprove photocatalytic materials, and it would be a viable method to enhanceotherphotoactivesurfaceprocesses

PhotocatalyticallyactiveZnOnanorodcrystalsarereadilygrown usinga lowtemperaturehydrothermal procedureonPBT fibers mats, when the fibers are first coated with a conformal ZnO nucleationlayerusingatomiclayerdeposition.TheALDefficiently functionalizedthepolymerfibertofacilitatehydrothermalnanorod crystalnucleationandsubsequentgrowth.Theprocessproduces fiberswith∼10×enhancementintotalsurfacearea(determined from BET analysis) on a per sample size (cm2/cm2) basis We demonstratedthattheZnOfilm/nanorodcompositewill photocat-alyticallydegradeanazoorganicdye(acidred40)inaqueousmedia

ataratethatisnearly2×fasterthanasimilarfiberwithonlythe ZnOfilmcoating.This2×rateenhancementislessthanthe10× sur-faceareaincrease,probablybecauseofshadowingeffectsduring illumination.Moreimportantly,thefunctionalizedpolymerfiber matcouldbereusedveryeasily,andnoadditionalparticle recov-eryprocessisneeded.ThiscombinationofALDandhydrothermal

Trang 6

216 B Gong et al / Applied Catalysis A: General407 (2011) 211– 216

processesmayalsobeusefulforothercrystalgrowthsystems,such

asTiO2,Fe2O3,SnO2andV2O5,wherehighareaandreadysolution

accessaredesired

Acknowledgement

WeacknowledgesupportforthisworkfromtheUSNational

ScienceFoundationundergrantCBET-1034374

References

[1] M Law, L.E Greene, J.C Johnson, R Saykally, P.D Yang, Nat Mater 4 (2005)

455.

[2] S Liang, H Sheng, Y Liu, Z Huo, Y Lu, H Shen, J Cryst Growth 225 (2001)

110.

[3] H Ohta, K Kawamura, M Orita, M Hirano, N Sarukura, H Hosono, Appl Phys.

Lett 77 (2000) 475.

[4] J Zhang, L.D Sun, H.Y Pan, C.S Liao, C.H Yan, New J Chem 26 (2002) 33.

[5] N Daneshvar, D Salari, A.R Khataee, J Photochem Photobiol A: Chem 162

(2004) 317.

[6] B Pal, M Sharon, Mater Chem Phys 76 (2002) 82.

[7] C.S Turchi, D.F Ollis, J Catal 122 (1990) 178.

[8] L.E Greene, M Law, J Goldberger, F Kim, J.C Johnson, Y.F Zhang, R.J Saykally,

P.D Yang, Angew Chem Int Ed 42 (2003) 3031.

[9] Y Li, G.W Meng, L.D Zhang, F Phillipp, Appl Phys Lett 76 (2000) 2011.

[10] J.J Wu, S.C Liu, Adv Mater (Weinheim, Germany) 14 (2002) 215.

[11] L.F Xu, Q Liao, J.P Zhang, X.C Ai, D.S Xu, J Phys Chem C 111 (2007) 4549.

[12] M.S Arnold, P Avouris, Z.W Pan, Z.L Wang, J Phys Chem B 107 (2003) 659 [13] Z.R Dai, Z.W Pan, Z.L Wang, Adv Funct Mater 13 (2003) 9.

[14] Y.H Tong, Y.C Liu, C.L Shao, R.X Mu, Appl Phys Lett 88 (2006) 123111 [15] L Vayssieres, K Keis, S.E Lindquist, A Hagfeldt, J Phys Chem B 105 (2001) 3350.

[16] J.-S Na, B Gong, G Scarel, G.N Parsons, ACS Nano 3 (2009) 3191.

[17] E Santala, M Kemell, M Leskela, M Ritala, Nanotechnology 20 (2009) 035602 [18] X.Y Zhang, J.Y Dai, H.C Ong, N Wang, H.L.W Chan, C.L Choy, Chem Phys Lett.

393 (2004) 17.

[19] R.B.M Cross, M.M De Souza, E.M.S Narayanan, Nanotechnology 16 (2005) 2188.

[20] G.K Hyde, K.J Park, S.M Stewart, J.P Hinestroza, G.N Parsons, Langmuir 23 (2007) 9844.

[21] G.K Hyde, G Scarel, J.C Spagnola, Q Peng, K Lee, B Gong, K.G Roberts, K.M Roth, C.A Hanson, C.K Devine, S.M Stewart, D Hojo, J.S Na, J.S Jur, G.N Parsons, Langmuir 26 (2010) 2550.

[22] M Kemell, V Pore, M Ritala, M Leskela, M Linden, J Am Chem Soc 127 (2005) 14178.

[23] Q Peng, X.Y Sun, J.C Spagnola, G.K Hyde, R.J Spontak, G.N Parsons, Nano Lett.

7 (2007) 719.

[24] M Kemell, V Pore, M Ritala, M Leskela, Chem Vap Deposition 12 (2006) 419 [25] S.M Lee, G Grass, G.M Kim, C Dresbach, L.B Zhang, U Gosele, M Knez, Phys Chem Chem Phys 11 (2009) 3608.

[26] S.M Lee, E Pippel, U Gosele, C Dresbach, Y Qin, C.V Chandran, T Brauniger,

G Hause, M Knez, Science 324 (2009) 488.

[27] B Gong, Q Peng, J.S Jur, C.K Devine, K Lee, G.N Parsons, Chem Mater 23 (2011) 3476.

[28] B Gong, Q Peng, G.N Parsons, J Phys Chem B 115 (2011) 5930.

[29] C Hariharan, Appl Catal A: Gen 304 (2006) 55.

[30] P Gijsman, G Meijers, G Vitarelli, Polym Degrad Stab 65 (1999) 433.

Ngày đăng: 06/05/2014, 13:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm