c o m / l o ca t e / a p s u s c Facile synthesis of ZnO micro-nanostructures with controllable morphology and their applications in dye-sensitized solar cells Yi Zhoua,∗, Dang Lia, Xian
Trang 1jo u rn a l h om epa g e :w w w e l s e v i e r c o m / l o ca t e / a p s u s c
Facile synthesis of ZnO micro-nanostructures with controllable morphology and their applications in dye-sensitized solar cells
Yi Zhoua,∗, Dang Lia, Xiangchao Zhangb, Jianlin Chena, Shiying Zhangb
a Department of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
b Department of Science and Technology, Changsha University, Changsha 410003, China
Article history:
Received 11 May 2012
Received in revised form 31 July 2012
Accepted 31 July 2012
Available online 31 August 2012
Keywords:
ZnO
Micro-nanostructures
Urchin
Dye sensitization solar cell
Photoelectric properties
Different morphologies of ZnO micro-nanostructureswere successfullyprepared byhydrothermal methodatrelativelymildconditionsusingammoniatoadjustthepHofthereactionsystem.Thesamples werecharacterizedbyX-raypowderdiffraction,scanningelectronmicroscopy,opticalreflectance spec-tra,andphotocurrent–voltagecurve.TheresultsdemonstratedthatthemorphologiesofZnOchanged from“wire”to“flower”,“urchin”and“wire”withincreaseinthepHofthereactionsystemduetothe increasedconcentrationofammonia.Thediffusedreflectancespectraillustratedthatthereflectance
ofdenserurchin-likeZnOwaslowat18%inthevisibleregion.Whentheas-synthesizedZnO micro-nanostructureswereusedastheanodeofthedyesensitizationsolarcell,thedenserurchin-likeZnO exhibitedthebestphotoelectricproperties.Theshortcircuitcurrent(Jsc),opencircuitvoltage(Voc),and conversionefficiency()were6.50mA/cm2,0.682V,and1.92%,respectively
© 2012 Elsevier B.V All rights reserved
1 Introduction
As an important low-cost semiconductor functional
mate-rial withlarge bandgap (3.37eV) and large excitation binding
energy (60meV) [1], zinc oxide (ZnO) is recognized as one of
the most promising materials for optoelectronic applications
Micro-nanostructuredZnOhasdrawnconsiderableattentiondue
to its unique electrical, mechanical, and optical properties, in
addition to its applications in numerous fields, such as solar
cells [2], gas sensors [3,4], piezoelectric materials [5],
pho-tonic crystals[6],and optoelectric devices [7] Previous studies
demonstrated that the properties of ZnO are closely related
to the size and shape of the structures For example,
tetra-pod ZnO nanostructures exhibit strong UV emission [8] and
needle-like ZnO arrays exhibit strong blue light emission [9]
Thus, studyingthemorphology ofmicro-nanostructuredZnO is
important
ZnOmicro-nanostructureshavebeensynthesizedwithvarious
methods,suchaschemicalvapourdeposition[10],template-based
method[11],laserablation[12],spraypyrolysistechnique[13],
hydrothermal method [14], and electrodeposition method[15]
Researchershave preparedmicro-nanostructuredZnO with
dif-ferentmorphologiesusingthesedifferentmethods.Forexample,
Polsongkrametal.[14]preparedZnOnanorodsbyhydrothermal
∗ Corresponding author Tel.: +86 731 85258328; fax: +86 731 85258328.
E-mail addresses: zhouyihn@163.com, zhouyihn@yahoo.com.cn (Y Zhou).
method Chen et al [16] synthesized ZnO nanotubes by a sonochemical method at low temperature Liu and Zeng [17]
fabricated ZnO dandelions by a modified Kirkendall process Jana et al [18] prepared water lily-type ZnO flowers by a simple solution method, and Elias et al [19] prepared hollow urchin-like ZnO thin filmsbyelectrochemical deposition How-ever, majority of these studies are limited to the research of one kind of morphology Few studies have reported on ZnO micro-nanostructureswithdifferentmorphologiesusingasingle method
Inthepresentstudy,severaltypesofZnOmicro-nanostructures with different morphologies and photoelectric properties were prepared by a simple hydrothermal method at relatively mild conditions The concentration of ammonia, which can adjust the pH of the reaction system, was controlled Subsequently, the influence of pH on the photoelectric properties of the ZnO micro-nanostructures was investigated by studying the photocurrent–voltage (I–V) characteristicsof thedye-sensitized solarcell(DSSC)
2 Experimental
2.1 Materials Allchemicalswereofanalyticalreagentgradeandused with-outfurtherpurification.Allaqueoussolutionswerepreparedusing doubledistilledwater
0169-4332/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 22.2 PreparationofZnOfilm
ZnO micro-nanostructures were synthesized using a
hydro-thermalmethod.Theprocedurewasasfollows:1.18gzincnitrate
hexahydrate(Zn(NO3)2·6H2O)and0.56ghexamethylenetetramine
(C6H12N4)wereaddedto40mLdoubledistilledwaterunderstrong
magneticstirringatroomtemperaturetoobtainatransparentand
homogeneoussolution.NH3(25%)wasthendroppedintothe
solu-tionat60drops/mintochangethepHfrom7to11.Thesolution
waskeptatroomtemperaturefor0.5hundervigorousstirringto
obtaintheprecursor
TheZnOmicro-nanostructuresusedinthisworkweregrownon
FTO-coatedglasssubstrates.First,theFTO-coatedglasssubstrates
were successively cleaned in an ultrasonic bath with acetone,
ethanol,anddoubledistilledwaterfor15mintoremovedustand
preventsurfacecontamination.The FTO-coatedglass substrates
werethendippedin0.5mol/LZnCl2 aqueoussolutionfor5min
atroomtemperature.Finally,thesubstrateswerepulledupward
byahoistwithconstantspeed,andthendriedintheairtoobtain
functionalizedFTO-coatedglasssubstrates[20]
Theprecursorsolutionandthefunctionalizedsubstrateswere
transferredtoaTeflon-sealedautoclave.Thenthereactionwaskept
at90◦Cfor9htosynthesizetheZnOmicro-nanostructures.After
deposition,thesampleswerecleanedseveraltimeswithdouble
distilledwaterandthendriedintheair
2.3 Constructionofdye-sensitizedsolarcell
The construction of DSSC has been reported in a previous
research[21]
2.4 Characterization
The samples were characterized using scanning electron
microscopy(SEM,JEOLJSM-6700F)andX-raydiffractionpatterns
wererecordedonanX-raydiffractionsystem(SIEMENSD5000)
ThediffusedreflectancespectraweremeasuredbyanIPCEtester
(SolarCellScan100,BeijingZhuoLiHanGuang).TheI–V
charac-teristicsweremeasuredusingacomputer-controlleddigitalsource
meter(Keithley,Model2400)undertheilluminationofaNewport
solarsimulator(AM1.5,100mW/cm2)
3 Results and discussion
3.1 Morphologyandstructuralanalyses
Fig.1 depicts theSEM imagesof micro-nanostructured ZnO
grownunderdifferentpH,namely,7,8,9,10and11.Thegrowth
temperatureandtimewere90◦Cand9h,respectively.Asshownin
Fig.1,themorphologyoftheas-grownmicro-nanostructuredZnO
wascloselyrelatedtothepHoftheprecursorsolution
Fig.1aindicatesthatZnOnanowiresformedonthesubstrate
when the applied pH was 7 The dense ZnO nanowires with
hexagonalstructure were vertically well-alignedand uniformly
distributed onthesubstrate.Theaveragediameters of theZnO
nanowires wereapproximately 30–50nm; thelength–diameter
ratioswereapproximately6–10.ThesamplepreparedwithpH=8
resultedintheformationofflower-likeZnO whosepetalswere
approximately500–700nmin lengthand300–400nminwidth
(Fig.1b).WhenthepHwasincreasedto9,urchin-likeZnOwere
formed.Fig.1crevealsthat theurchin-likeZnO wascomprised
ofnanorods,whichhadsimilarcentersandwereapproximately
5–6minlengthand300–500nminwidth.Notably,urchin-like
ZnOalsoformedwhentheappliedpHwascontrolledat10(Fig.1d)
However,thisurchin-likeZnOwascomprisedofneedle-likeZnO
nanowires,andthesizesandamountsofZnOnanowireswerealso
differentfromthoseinFig.1c.WhentheappliedpHwasincreased
to11,theurchin-likemorphologiesdisappearedandchangedto ZnOnanowireswithpoororientations.Theaveragediametersof these ZnO nanowires were approximately 50–80nm, and their averagelengthswereapproximately500–600nm
Fig.1fandgisthelowermagnificationSEMimagesofFig.1cand
d,respectively.Theurchinstructureswerelinedbyasinglelayeron thesubstrate,andalltheZnOnanowireswererelatively homoge-neous.Fig.1hrevealsthesideviewimagesofmicro-nanostructured ZnOatpH=10.AsshowninFig.1h,thefilmthicknesseswereabout
2m
Urchin-likeZnO micro-nanostructureswere formedon FTO-coatedglasssubstratesbyahydrothermalmethod.Theformation processcanbeexpressedasfollows[22]:
(CH)6N4+6H2O →6HCHO+NH3 (1)
NH3+H2O →NH4++OH− (2)
Zn2++NH3→Zn(NH3)4 + (3)
Zn2++4OH−→ Zn(OH)4 − (4) Zn(NH3)4 ++2OH−→ ZnO+4NH3+H2O (5) Zn(OH)4 −→ ZnO+H2O+2OH− (6) BasedonthegrowthhabitsofZnO crystalsinaqueous solu-tions,urchin-likeZnOmicro-nanostructurescanbeobtainedonly whenthepHofthebulksolutionarecontrolledatcertainvalues WhenthepHislow,theconcentrationsofOH−andNH3 inthe precursorsolutionarecorrespondinglylow,leadingtothesmall amountofZn(OH)4 −and Zn(NH3)42+,whichareinsufficientto formthenuclei.Therefore,ZnOnanowiresformonthesubstrate whentheappliedpHiscontrolledat7(Fig.1a).Theamountof Zn(OH)4 −andZn(NH3)42+increaseswiththepH.WhenthepH
isabove8,Zn(OH)4 −andZn(NH3)42+willgatheranddecompose
toZnOnucleiatthebeginningofthereaction.Thegrowthunits
of Zn(OH)4 − and Zn(NH3)42+ are then adsorbed onthenuclei due tointermolecularabsorptionforces,suchasvanderWaals interactions, and finally growto nanowires in all directions to formthree-dimensionalurchin-likeZnO.TheSEMmicrographsin
Fig.1revealthatthemorphologiesofthree-dimensionalZnOare differentunderdifferentconditions.AsthepHincreases,the mor-phologies ofZnO changefrom“flower”(Fig.1b),tosparse“sea urchin”(Fig.1c)and denser“sea urchin”(Fig.1d) The pHhas
an important functionduring the formationof the ZnO micro-nanostructures Thiscanbeexplainedasfollows.Ammonia can easilyseparatefromthesolutionwhenthepHishigh,whichresults
inanincreaseintheairpressureoftheTeflon-sealedautoclave ThiswillinfluencethegrowthofZnOmicro-nanostructures, lead-ingtochangeinthemorphologyofZnO.ThepHofthereaction solutionincreaseswiththeadditionofammonia.Atthesametime, thegrowthunitsaremorelikelytocomeincontactwiththenuclei ThisphenomenoncanbepropitiousfortheformationofZn(OH)4 − and Zn(NH3)42+,finallyleadingtoanincrease intheamountof nanowires onthenuclei.However,when thepHincreasestoa certaindegree,theairpressureintheTeflon-sealedautoclavewill increasetoagreaterdegree;thus,Zn(OH)4 −andZn(NH3)42+are unabletogathertoformtheinitialZnOnuclei.Therefore,the pre-cursorsolutionisgeneratedforthesingleandindependentZnO nanowires,hindering themfromformingflower- orurchin-like ZnO.Theconcentrationofammonia,thepH,andtheairpressure
oftheTeflon-sealedautoclavehasanimportantfunctionin the abovetransformation processesofZnO morphologies.However, thespecificreactionmechanismrequiresfurtherresearch
Trang 3Fig 1.SEM images of the micro-nanostructured ZnO under different pH: (a) 7; (b) 8; (c and f) 9; (d and g) 10; and (e) 11 Lower magnification SEM images (f) and (g) Side view images of micro-nanostructured ZnO at pH = 10 (h).
3.2 XRDpatterns
Fig.2showstheXRDspectraofthemicro-nanostructuredZnO
underdifferentpH.Alldiffractionpeakscanbeindexedtoa
hexag-onalwurtzitephaseofZnO,inagreementwiththestandardcard
(JCPDS78-2486).Nocharacteristicpeaksofanyimpurities,except
polycrystallineSnO2 (fromtheFTOsubstrate),weredetectedin
thepattern,confirmingthattheobtainedproductsarepureZnO
Thecharacteristicpeakswerehighinintensityandnarrow,which
indicatedthatZnOmicro-nanostructurehadhighcrystallinity.The
intensitiesofthediffractionpeaksofmicro-nanostructuredZnO
wereobviouslydifferent,indicatingthatthepHhadeffectonthe
crystallinityofgrownZnOmicro-nanostructure
3.3 Opticalreflectionspectraanalyses
Fig 3 shows the optical reflection spectra of the
micro-nanostructured ZnO under different pH Fig 3 indicates that
the light scattering of the ZnO micro-nanostructure is closely
related to its morphology The surface areas of denser
urchin-likestructure,sparseurchin-likestructure,verticallywell-aligned
nanowirestructure,disorderlynanowirestructureandflower-like
structurewere350,290,223,147,96m2/g,respectively.Anddue
tothedifferentsurfaceareasofthedifferentmorphologies,the order ofintensityoftheZnO micro-nanostructurelight scatter-ingisasfollows:denserurchin-likestructure<sparseurchin-like structure<verticallywell-alignednanowirestructure<disorderly nanowire structure<flower-like structure Among these ZnO micro-nanostructures, the reflectance of the denserurchin-like ZnO is the lowest at approximately 18% in the visible region Thereflectanceoftheflowerstructureisthehighest.Thiscould attributetothesize[23]andthemorphology[24]ofZnO,which playimportantrolesforcontrollingthelightscattering.Inaddition, thegraphindicatesthattheentireultravioletabsorptionspectrum edge is approximately380nm, which isin agreementwiththe directwidebandgap(3.37eV)ofZnO
3.4 ApplicationofZnOmicro-nanostructureinDSSC
Fig.4comparestheI–VcharacteristicsoftheDSSCbasedonZnO with different micro-nanostructures The corresponding values are summarized in Table 1, which demonstrates photoelectro-chemical characteristics,suchascurrentdensityatshortcircuit (J ), voltageat opencircuit(V ), fill factor (FF),and efficiency
Trang 4Fig 2. XRD spectra of the micro-nanostructured ZnO under different pH: (a) 7; (b)
11; (c) 8; (d) 9; and (e) 10.
Fig 3.Optical reflection spectra of the micro-nanostructured ZnO under different
pH: (a) 8; (b) 11; (c) 7; (d) 9; and (e) 10.
Fig 4.Photocurrent–voltage characteristics of ZnO with different micro-nanostructure-based DSSCs (a) Denser urchin-like ZnO; (b) sparse urchin-like ZnO; (c) orderly ZnO nanowire; (d) flower-like ZnO; and (e) disorderly ZnO nanowire.
Table 1
Photovoltaic parameters of micro-nanostructured ZnO with different micro-nanostructures.
thatthephotoelectrochemicalcharacteristicsoftheDSSC-based denserurchin-like ZnO arehigh, reachinga maximumvalueof 1.92%.Notably,thedenserurchin-likestructureisbeneficialforthe transferofelectrolytes,andthisspecificstructurecanincreasethe productionofcarriersandphotoelectricactivityduetoitslarger surfaceareaand increasedactivitycentersforabsorbingdye.In theurchin-likestructure,theneedle-likeZnOnanowireshavethe samecenterextendedtothesurroundings.Thisspecialstructure can effectively improve the efficiency of electron transmission, decreasesthetransmissionpathofchargeintheelectrode materi-alsandtherecombinationofcarriers.Asaresult,thephotoelectric activityofZnOincreases
Table1furthershowsthattheZnOnanowireswereformedon thesubstratewhen theappliedpHwascontrolledat7 and11, butthephotoelectricparametersofthesetwodifferentnanowires varied enormously Due totheir excellent orientation,the ZnO nanowirespreparedatpH=7canprovideaneffective transmis-sionpathforelectrons,reducetherecombinationofcarriers,and increasethephotoelectricactivityofZnO
4 Conclusions
SeveralkindsofZnOmicro-nanostructureswithdifferent mor-phologiesandphotoelectricpropertieshavebeenpreparedbya simple hydrothermal methodat relatively mild conditions.The
pH is essential in the growth of ZnO, and resultsin the mor-phology ofZnO changing from“wire”to“flower”,“urchin”and
“wire”withtheadditionofdifferentamountsofammonia Due
to thedifferent surface areas of the various morphologies, the orderof intensityoftheZnOmicro-nanostructure light scatter-ingisasfollows:denserurchin-likestructure<sparseurchin-like
Trang 5nanowirestructure<flower-likestructure.Amongtheforegoing,
thereflectivityofthedenserurchin-likestructurewasthelowest
at18%.WhentheobtainedZnOmicro-nanostructureswereusedas
theanodeoftheDSSC,thephotoelectrochemicalcharacteristicsof
theDSSCbasedonZnOwithdifferentmicro-nanostructuresvary
Thedenserurchin-likeZnOmicro-nanostructuresdisplayexcellent
photoelectricpropertiesduetotheirlargersurfacearea,increased
activitycenters,andmoreeffectivetransmissionpaths
Acknowledgments
This work was supported by the National Natural Science
FoundationofChina(grantno.21171027) Theauthorsarealso
gratefultotheaidprovidedbytheScienceandTechnology
Inno-vativeResearchTeaminHigherEducationalInstitutionsofHunan
Province
References
[1] J.R Jennings, L.M Peter, A reappraisal of the electron diffusion length in
solid-state dye-sensitized solar cells, J Phys Chem C 111 (2007) 16100–16104.
[2] B.N Pawar, G Cai, D Hama, R.S Mane, T Ganesh, A Ghule, R Sharma, K.D.
Jadhava, S.H Han, Preparation of transparent and conducting boron-doped ZnO
electrode for its application in dye-sensitized solar cells, Sol Energy Mater Sol.
Cells 93 (2009) 524–527.
[3] J Yi, J.M Lee, W.I Park, Vertically aligned ZnO nanorods and graphene hybrid
architectures for high-sensitive flexible gassensors, Sens Actuators B: Chem.
115 (2011) 264–269.
[4] T Krishnakumar, R Jayaprakash, N Pinna, N Donato, A Bonavita, G Micali,
G Neri, CO gas sensing of ZnO nanostructures synthesized by an assisted
microwave wet chemical route, Sens Actuators B: Chem 143 (2009) 198–204.
[5] W Water, T.H Fang, L.W Ji, C.C Lee, Effect of growth temperature on
photo-luminescence and piezoelectric characteristics of ZnO nanowires, Mater Sci.
Eng B 158 (2009) 75–78.
[6] H Wang, K.P Yan, J Xie, M Duan, Fabrication of ZnO colloidal photoniccrystal
by spin-coating method, Mater Sci Semicond Process 11 (2008) 44–47.
[7] G.Z Shen, Y Bando, C.J Lee, Synthesis, Evolution of novel hollow ZnO
urchins by a simple thermal evaporation process, J Phys Chem B 109 (2005)
10578–10583.
[8] Z.G Chen, A.Z Ni, F Li, H.T Cong, H.M Cheng, G.Q Lu, Synthesis and photo-luminescence of tetrapod ZnO nanostructures, Chem Phys Lett 434 (2007) 301–305.
[9] T.G You, J.F Yan, Z.Y Zhang, J Li, J.X Tian, J.N Yun, W Zhao, Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process, Mater Lett 66 (2012) 246–249.
[10] Q.J Feng, L.Z Hu, H.W Liang, Y Feng, J Wang, J.C Sun, J.Z Zhao, M.K Li, L Dong, Catalyst-free growth of well-aligned arsenic-doped ZnO nanowires by chemicalvapordeposition method, Appl Surf Sci 257 (2010) 1084–1087 [11] J Singh, S.S Patil, M.A More, D.S Joag, R.S Tiwari, O.N Srivastava, Formation
of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics, Appl Surf Sci 256 (2010) 6157–6163.
[12] X.F Duan, C.M Lieber, General synthesis of compound semiconductor nanowires, Adv Mater 12 (2000) 298–302.
[13] S.D Shinde, G.E Patil, D.D Kajale, V.B Gaikwad, G.H Jain, Synthesis of ZnO nanorods by spraypyrolysis for H 2 S gas sensor, J Alloys Compd 528 (2012) 109–114.
[14] D Polsongkrama, P Chamninok, S Pukird, L Chow, O Lupan, G Chai, H Khallaf,
S Park, A Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B 403 (2008) 3713–3717.
[15] R Chander, A.K Raychaudhuri, Electrodeposition of aligned arrays of ZnO nanorods in aqueous solution, Solid State Commun 145 (2008) 81–85 [16] Y.J Chen, C.L Zhu, G Xiao, Ethanol sensing characteristics of ambient tempera-ture sonochemically synthesized ZnO nanotubes, Sens Actuators B 129 (2008) 639–642.
[17] B Liu, H.C Zeng, Fabrication of ZnO dandelions via a modified Kirkendall pro-cess, J Am Chem Soc 126 (2004) 16744–16746.
[18] A Jana, N.R Bandyopadhyay, P Sujatha Devi, Formation and assembly of blue emitting water lily type ZnO flowers, Solid State Sci 13 (2011) 1633–1637 [19] J Elias, C Levy-Clement, M Bechelany, J Michler, G.Y Wang, Z Wang, L Philippe, Hollow urchin-like ZnO thin films by electrochemical deposition, Adv Mater 22 (2010) 1607–1612.
[20] C.S Liu, Y Masuda, Y.Y Wu, O Takai, A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces, Thin Solid Films 503 (2006) 110–114.
[21] H Li, Y Zhou, C.X Lv, M.M Dang, Templated synthesis of ordered porous TiO 2
films and their application in dye-sensitized solar cell, Mater Lett 65 (2011) 1808–1810.
[22] J Xie, H Wang, M Duan, L.H Zhang, Synthesis and photocatalysis properties
of ZnO structures with different morphologies via hydrothermal method, Appl Surf Sci 257 (2011) 6358–6363.
[23] R Tena-Zaera, J Elias, C Lévy-Clément, ZnO nanowire arrays: optical scattering and sensitization to solar light, Appl Phys Lett 93 (2008) 233119.
[24] C Lévy-Clément, J Elias, R Tena-Zaera, ZnO/CdSe nanowires and nano-tubes: formation, properties and applications, Phys Status Solidi C 7 (2009) 1596–1600.