TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2D1 3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + ([.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m > −5
Câu 2. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 3. [2-c] Cho hàm số f (x)= 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 4. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 5. Khối đa diện đều loại {5; 3} có số cạnh
Câu 6. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R B. D = [2; 1] C. D = R \ {1; 2} D. D = (−2; 1)
Câu 7. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 8. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
5
#
3
#
"
−2
3;+∞
!
Câu 9. Khối đa diện đều loại {4; 3} có số cạnh
Câu 10. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 11. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
Câu 12. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}
Câu 13. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.
Câu 14. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Trang 2Câu 15. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 16 Phát biểu nào sau đây là sai?
A lim un= c (un = c là hằng số) B lim qn= 0 (|q| > 1)
C lim1
nk = 0
Câu 17. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
A. 2
Câu 18. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 19. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 20. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 21. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
2
Câu 22 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C Cả ba đáp án trên.
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 23. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 24. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 25. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 26. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) trên khoảng (a; b)
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D Cả ba câu trên đều sai.
Câu 27. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
3S h. C V = 1
2S h. D V = S h
Trang 3Câu 28. Tính limcos n+ sin n
n2+ 1
Câu 29. Khối lập phương thuộc loại
Câu 30. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38
Câu 31. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1079
1728
1637
23
68.
Câu 32. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
C. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
Câu 33. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√
√ 2
3 .
Câu 34. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3
3√
3√ 3
12 .
Câu 35. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2
!
2;+∞
!
Câu 36. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 37. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞
f(x)
g(x) = a
Câu 38. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
13
23
9
25.
Câu 39. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 40. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Trang 4Câu 41. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3 B −3 ≤ m ≤ 4 C m= −3, m = 4 D m= 4
Câu 42. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 2
a3
√ 3
a3
√ 3
4 .
Câu 43. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 44 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 45. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng −∞;1
3
!
C Hàm số đồng biến trên khoảng 1
3; 1
! D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 46. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 47. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 48. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
Câu 49. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 50 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aα+β= aα.aβ
C aαβ = (aα
)β D aαbα = (ab)α
Câu 51. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey
Câu 52. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Trang 5Câu 53. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 54. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 3n
n2
Câu 55. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 56. Bát diện đều thuộc loại
Câu 57. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 3a3√
3 C V = a3
√ 3
2 . D V = 6a3
Câu 58. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 59. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√
√ 2
2 .
Câu 60. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
a3
4a3√ 3
3 .
Câu 61. Tứ diện đều thuộc loại
Câu 62. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 63. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 64. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng 2n.
B Số mặt của khối chóp bằng 2n+1.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 66. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A. 1
1
3.
Trang 6Câu 67. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 68. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 69. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
a
√ 57
17 .
Câu 70. Tính lim n −1
n2+ 2
Câu 71. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 72. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
3.
Câu 73. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 74. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 75. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 76. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ 2 sin 2x C −1+ sin x cos x D 1 − sin 2x.
Câu 77. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
5
2.
Câu 78. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 79. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3
√ 2
a3
√ 6
a3
√ 6
6 .
Câu 80. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Trang 7Câu 81. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 83. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 8
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 84 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 85. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 86. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Câu 87. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2
√
2 và 3 B 2 và 2
√
√
2 và 3 D 2 và 3.
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 89. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
3√ 3
a3√3
3 .
Câu 90. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 2
a3
√ 3
3√ 3
Câu 92. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 93. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).
Trang 8Câu 94. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 95. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 96. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
8
1
9.
Câu 97. Khối đa diện đều loại {3; 4} có số cạnh
Câu 98. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 99. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
12 .
Câu 100. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
4 .
Câu 101. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 102. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 103. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thì
Z
f0(x)dx=
Z
g0(x)dx
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 104. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
Trang 9Câu 105. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
3 .
Câu 106. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a√2
2a
a
3.
Câu 107. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 108. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 109. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (−∞; 0) và (1; +∞) C (−∞; −1) và (0; +∞) D (0; 1).
Câu 110. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 112. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 113. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Câu 114. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 115. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 116. Tính lim
x→ +∞
x −2
x+ 3
Trang 10Câu 117. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 118. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 119. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
20√3
√
√ 3
Câu 120. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 121. [1] Biết log6 √a= 2 thì log6abằng
Câu 122. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 123. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 124. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 125. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 126. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 127. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 128. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ qlog23x+ 1+4m−
1= 0 có ít nhất một nghiệm thuộc đoạnh
1; 3
√
3i
Câu 129. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 130. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
HẾT