1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt (529)

13 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt (529)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 156,06 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1232h] Trong không gian Oxyz, cho đường thẳng d [.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

C.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

Câu 2. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = [2; 1] C. D = R D. D = R \ {1; 2}

Câu 3. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 4. Tính lim n −1

n2+ 2

Câu 5. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 6 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= kZ f(x)dx, k là hằng số B.

Z

f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

Câu 7. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 8. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

C (x − 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

Câu 9. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

3.

Câu 10. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Trang 2

Câu 11 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 25 triệu đồng C 2, 22 triệu đồng D 2, 20 triệu đồng.

Câu 12. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 13. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 14. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 16. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 17. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 18 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Bát diện đều B Thập nhị diện đều C Nhị thập diện đều D Tứ diện đều.

Câu 19. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3

4a3

2a3√ 3

3 .

Câu 20. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

1

3.

Câu 21. Tính lim

x→2

x+ 2

x bằng?

Câu 22. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trang 3

Trong hai khẳng định trên

A Cả hai đều đúng B Cả hai đều sai C Chỉ có (II) đúng D Chỉ có (I) đúng.

Câu 23. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

2√ 2

Câu 24. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3

a3√3

12 .

Câu 25. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 26. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 27. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x3− 3x C y= x +1

x. D y= x −2

2x+ 1.

Câu 28. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 2

12 .

Câu 29. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 30. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 31. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 32. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 33. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

5.

Câu 34. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng 2n+ 1

B Số mặt của khối chóp bằng số cạnh của khối chóp.

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng 2n+1.

Trang 4

Câu 35. Tính limcos n+ sin n

n2+ 1

Câu 36. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 37. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

2.

Câu 38. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 39. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= loga2 C log2a= 1

loga2. D log2a= 1

log2a.

Câu 40. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 41. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3

a3

√ 3

6 .

Câu 42. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

4 .

Câu 43. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 44. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a

√ 2

Câu 45. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1

ln 10. C f

0 (0)= 1 D f0(0)= ln 10

Câu 46. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 47. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

√ 68

Câu 48. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln 2 C y0 = 1

0 = 2x ln x

Câu 49. Nhị thập diện đều (20 mặt đều) thuộc loại

Trang 5

Câu 50. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = log√

4 x

C y = logaxtrong đó a= √3 − 2 D y = log1 x

Câu 51. Khối đa diện đều loại {5; 3} có số mặt

Câu 52. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 53. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 54. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 55. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 56. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 57. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 58. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 59. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 60. Dãy số nào sau đây có giới hạn khác 0?

A. √1

1

sin n

n+ 1

n .

Câu 61. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

a3√ 3

5a3√ 3

2a3√ 3

3 .

Câu 62. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Trang 6

Câu 63. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 64. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 65. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A 2a

√ 6

2 .

Câu 66. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

3 . C V = πa3

√ 6

6 . D V = πa3

√ 3

2 .

Câu 67. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3

√ 3

a3

a3

3 .

Câu 68. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 69. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 2

5n − 3n2 D un = 1 − 2n

5n+ n2

Câu 70. Khối đa diện đều loại {3; 3} có số cạnh

Câu 71. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 72. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

1

√ 3

2 .

Câu 73. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 74. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 75. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 76. Cho hàm số y= −x3+ 3x2

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Trang 7

Câu 77. Thể tích của khối lập phương có cạnh bằng a

√ 2

A 2a3

3√ 2

2 D V = 2a3

Câu 78 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 79. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1

2.

Câu 80. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2017

4035

2018.

Câu 81. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 82. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là −4.

Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 27 lần B Tăng gấp 3 lần C Tăng gấp 9 lần D Tăng gấp 18 lần.

Câu 84. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

3

24.

Câu 85. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 2x3ln 10.

Câu 86. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 87. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Trang 8

Câu 88. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 89. [1] Giá trị của biểu thức 9log3 12bằng

Câu 90 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 91. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.

Câu 92. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 93. Tứ diện đều thuộc loại

Câu 94. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

2.

Câu 95. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 9

3

Câu 96. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2

C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1

Câu 97. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 98. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 8

√ 3

20√3

√ 3

Câu 99. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11 − 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 9

11+ 19

Câu 100. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

Trang 9

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 101. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Câu 102. Khối đa diện đều loại {3; 3} có số mặt

Câu 103. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 104. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 105. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 106. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

√ 13

Câu 107 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim √1

n = 0

Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 109. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

Câu 110. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 111. Khối đa diện đều loại {5; 3} có số cạnh

Câu 112. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 113. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)

Câu 114. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 115. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√5

a3√5

a3√3

12 .

Trang 10

Câu 116 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 117. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 118. Khối lập phương thuộc loại

Câu 119. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 120. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 121. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 122. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 123. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 124. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3

√ 6

3√

3√ 15

3 .

Câu 125. [1] Đạo hàm của làm số y = log x là

0 = 1

xln 10. C y

0 = ln 10

0 = 1

x.

Câu 126. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 127. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

2a3√ 6

a3√ 6

3 .

Câu 128. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√2

a3√2

a3√2

4 .

Câu 129. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Ngày đăng: 05/04/2023, 20:33

w