LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hìn[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 0; 3) B A(0; 2; 3) C A(1; 2; 0) D A(1; 0; 3).
Câu 2 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 3 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
5.
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x + y + 2z = 0.
Câu 5 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 6 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 7 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 8 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 9 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần lượt
được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 10 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 11 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 12 Số phức z= 2 − 3i có phần ảo là
Câu 13 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 14 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
1
2(x
2+ 1)
1
2(2x) 1
2
Trang 2Câu 15 Cho số phức z= (1 + i)2
(1+ 2i) Số phức z có phần ảo là
Câu 16 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
a
−
→ c
Câu 17 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = 1
πxπ−1
Câu 18 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2≤ log3x+ log2
x2+ y2+ 24x
?
Câu 19 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?
Câu 20 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
3
Câu 21 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 22 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = 1
x ln 3 B y′ = ln 3
x C y′ = − 1
x ln 3 D y′ = 1
x
Câu 23 ChoR 1x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′
(x)= 2
x 2 C F′
(x)= 1
x D F′
(x)= −1
x 2
Câu 24 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 25 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n4 = (1; 1; −1) D.→−n3 = (1; 1; 1)
Câu 26 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 27 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln(6a2) B ln2
3
Câu 28 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 29 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
Câu 30 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Trang 3Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′= 1
′ = ln3
′ = 1
′ = − 1 xln3.
Câu 32 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 34 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
Câu 35 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 36 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 3
1
2 < |z| < 3
2. C |z| <
1
2. D |z| > 2.
Câu 37 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 3 B max |z|= √2 C max |z|= 1 D max |z|= 2
Câu 38 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 39 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác vuông.
C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác cân.
Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A x − y+ 8 = 0 B x − y+ 4 = 0 C x+ y − 5 = 0 D x+ y − 8 = 0
Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B (x − 5)2+ (y − 4)2= 125
C (x − 1)2+ (y − 4)2 = 125 D x= 2
Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 43 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 hoặc m < −1
Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Trang 4Câu 45 Cho m= log23; n= log52 Tính log22250 theo m, n.
A log22250= 2mn+ n + 2
C log22250= 2mn+ n + 3
Câu 46 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′
B′C′
A 4a3√
3
Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay
⇔ x= y B Nếu a > 1 thì ax > ay
⇔ x> y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a < 1 thì ax > ay ⇔ x< y
Câu 48 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′
Tính giá trị cos α
A. 1
√ 3
√ 3
√ 5
5 .
Câu 49 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Trang 5HẾT