1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (699)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 119,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. 2π.a

3

π.a3

4π√2.a3

π√2.a3

Câu 2 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x + y + 2z = 0 D (P) : x − 2y − 2 = 0.

Câu 4 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 5 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B [22;+∞) C (7

4; 2]S[22;+∞) D [7

4; 2]S[22;+∞)

Câu 6 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (1

4).

Câu 7 Tìm nghiệm của phương trình 2x = (√3)x

Câu 8 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 9 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần lượt

được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 10 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 16π − 16

16

Câu 11 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A (3; −1; −1) B (−1; −3; 1) C A(−1; 2; 0) D (1; −2; 0).

Câu 12 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A A3

Câu 13 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Trang 2

Câu 14 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 < m ≤ −3 B −4 ≤ m < −3 C m > −4 D −4 < m < −3.

Câu 15 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 16 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 17 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (1; 2; 3) B (2; 4; 6) C (−1; −2; −3) D (−2; −4; −6).

Câu 18 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 19 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 20 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x−3

Câu 21 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3).

Câu 22 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ−1 B y′ = πxπ C y′ = 1

Câu 23 NếuR2

0 f(x)dx= 4 thì R2

0

h1

2f(x) − 2idx bằng

Câu 24 NếuR4

−1 f(x)dx= 2 và R−14 g(x)dx= 3 thì R−14[ f (x)+ g(x)]dx bằng

Câu 25 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

2√3

√ 2a

Câu 27 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 28 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 2

Câu 29 NếuR02 f(x)= 4 thì R2

0 [1

2f(x) − 2] bằng

Câu 30 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Trang 3

Câu 31 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 32 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 33 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 34 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 35 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

4 .

Câu 36 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 37 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| < 1

3

1

2 < |z| < 3

2.

Câu 38 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= √10 B |z|= √33 C |z|= 5√2 D |z|= 50

Câu 39 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√5 B max T = 2√5 C max T = 2√10 D max T = 3√2

Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x+ y − 5 = 0 C x − y+ 8 = 0 D x+ y − 8 = 0

Câu 41 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một Elip B Một đường thẳng C Một Parabol D Một đường tròn.

Câu 42 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol.

Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 44 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√3

5a√2

5a√2

Câu 45 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Trang 4

Câu 46 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRl + πR2 B St p = 2πRl + 2πR2 C St p = πRh + πR2 D St p = πRl + 2πR2

Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

6.

Câu 48 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

A D = (1; +∞)

B D = (−∞; −1] ∪ (1; +∞)

C D = (−∞; 0)

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2

Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

🧩 Sản phẩm bạn có thể quan tâm

w