LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng? A ln(ab2) = ln a[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2
C ln(a
b)= ln a
Câu 2 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−3; 1) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 3 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 2π.a
3
4π
√ 2.a3
π√2.a3
π.a3
3 .
Câu 4 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
4;+∞) C (0;1
Câu 5 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
3.
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(−3; 1; 1) B C(1; 5; 3) C C(3; 7; 4) D C(5; 9; 5).
Câu 7 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 8 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 9 Cho hàm số y = f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m ≤ −3 B −4 < m < −3 C −4 ≤ m < −3 D m > −4.
Câu 10 Cho cấp số nhân (un) với u1 = −1
2; u7 = −32 Tìm q?
2.
Câu 11 Số phức z= 2 − 3i có phần ảo là
Câu 12 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
3
3
4;
1
3
4;
1
3
4;
1
2; −1).
Câu 13 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; −3] ∪ [3; +∞) B [−3; 3] C (0; 3] D (−∞; 3].
Trang 2Câu 14 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A (−1; −3; 1) B A(−1; 2; 0) C (1; −2; 0) D (3; −1; −1).
Câu 15. R 6x5dxbằng
6x
Câu 16 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x B y′ = 2023x
ln 2023 C y′ = x.2023x−1 D y′ = 2023x
Câu 17 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3).
Câu 18 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
2
√ 3
√ 3
Câu 19 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; 2; 3) B (1; 2; −3) C (−1; −2; −3) D (1; −2; 3).
Câu 20 Phần ảo của số phức z= 2 − 3i là
Câu 21 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
Câu 22 NếuR02 f(x)dx= 4 thì R2
0
h1
2f(x) − 2idx bằng
Câu 23 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16
343 < log7 x2−16
27 ?
Câu 24 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x3− 3x − 5 B y= x2− 4x+ 1 C y= x4− 3x2+ 2 D y= x−3
x−1
Câu 25 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Câu 26 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 27 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −2
3.
Câu 28 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n2 = (1; −1; 1) B.→−n1 = (−1; 1; 1) C.→−n3 = (1; 1; 1) D.→−n4 = (1; 1; −1)
Câu 29 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Trang 3Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 32 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 33 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 34 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
2 .
Câu 35 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Một đường thẳng B Parabol C Hai đường thẳng D Đường tròn.
Câu 36 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 37 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 38 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 39 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′
là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2
⇔ x= 9
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. √2
1
4
√
1
√
2.
Câu 40 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
2 .
Câu 41 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một Parabol B Một Elip C Một đường tròn D Một đường thẳng Câu 42 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= √2 C max |z|= 3 D max |z|= 2
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
1
√ 5
√ 15
10 .
Câu 44 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 17
πa2√ 15
πa2√ 17
Trang 4Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 46 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
4ln 2+ 3π
6π
1
5ln 2+ 6π
5 . D ln 2+ 6π
5 .
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(5
3;
11
3 ;
17
3 ). B M(
2
3;
7
3;
21
4
3;
10
3 ;
16
3 ). D M(
7
3;
10
3 ;
31
6 ).
Câu 48 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 9a3√
3
Câu 49 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
125π√3
400π√3
500π√3
Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Trang 5HẾT