1. Trang chủ
  2. » Tất cả

Tiêu chuẩn tiêu chuẩn iso 05219 1984 scan

31 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Air Distribution And Air Diffusion - Laboratory Aerodynamic Testing And Rating Of Air Terminal Devices
Trường học International Organization for Standardization
Chuyên ngành Standardization
Thể loại tiêu chuẩn
Năm xuất bản 1984
Thành phố Switzerland
Định dạng
Số trang 31
Dung lượng 2,46 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

INT ERA T IO AL OGANIZA T IO FO ST ANDARDIZATIO MEYAWL 1HA R O PTAH3A R n0 CT AH~TM3AUW4 OGANlSATlO INT ERAT IOALE DE NR AL ISAT IO

Dist ribut ion et dif fusion d’a ir - Es a i en la boret oire et prksent a t ion des c a ra c t &ist iq es a kra ulq es des b uc hes d’air

3

g

De c ript o : air flow, aerody na mic s, air distr i utio , air dif f usio , air er minal d vic es, t ests, lab orat ory te ts, flo w meas r eme t, flo w ra t e,

p resure meas r eme t, velocit y meas r eme t, d f initio s

Trang 2

IS0 (h Inter nat io al O a niza t io for St a nd rdizat io ) is a w or l w id f ed r at io of

na t io al st an ar ds b dies (IS0 memb r b dies) The w or k of d velop in Inter nat io al

Sta nd r ds is ca r r ie o t thr ou h IS0 t ec hnica l c m itt ees Every memb r b od

int er est ed in a su jec t for w hic a t ec hnica l c m it t ee ha s b ee a t ho ze ha s t he

rig t to b e represe t ed o t hat c mmit t e Int er nat io al orga niza t io s, g v ernme t a l

a nd n n-g v er nme t al in laiso w it h ISO, a lso t a ke pa rt in t he w or k

Draf Int e a tio a l St a nd r ds a dop t ed by t he t ec nic al c m it t ees a re c ir c ulat ed to

t he memb er b dies for a p p rova l b f or e t heir a c c ep t a nc e a s Inter nat io al St a nd r ds b y

t he IS0 Co n i

Int er nat io al St an a r d IS0 5 19 wa s d velop ed by T ec hnic a l Commit t ee ISO/T C 14 ,

Air dist ribut ion a nd a ir dif f usion, a nd wa s cir culat ed to t he memb r b dies in

Trang 3

A ir dist ribut ion a nd a ir dif f usion - L a bora t ory

1.1 Sc op e a nd field of a pplc a t io

T his Int er nat io al St a nd rd is int en e to st a nda rdize

la bora t ory a er ody na mic t es n a nd r a t in of a ir t er mina l

d v ic es, in lu in t he sp cif ic t io of suit a b le t est f acit ies a nd

mea sureme t t ec hniq es

T his Int er nat io al St an a r d gives o ly t est s for t he a sses me t

of c a r act er is cs of t he a ir ter min l d vic es u d r isot her mal

c n itio s An e 01) gives sp cif ic atio s for a su p leme t a ry

ditio s

1.2 Definitio s

All d finitio s a re in a cc or da c e w ith IS0 3 5 a nd t he folow-

in

1.2.1 Fu ctio al c ar ac t er is c s of a ir t er min l d vic es

w hic t he a ir t er mina l d vic e is to b e fite

NOT E - For a n air difuser, t he n min l size is g n ra lly k ow n a s

n c k size

1.2.1.2 Cor e a d sp c if ic a rea s

1.2.1.2.1 c r e of a n a ir t ermin l d v ic e: T ha t pa rt of a n a ir

t er min l d vic e loc a t ed w ithin a con e sh t sur f ac of

minimum a re insid of w hic a re a ll t he o e in s of t he a ir ter -

min l d vic e thr ou h w hic t he a ir c a n pa ss

1.2.1.2.2 ef f ect iv e a re (of a n a ir t er mina l d v ic e) : Sma llest

n t are of a n a ir t er min l d vic e ut ilze by t he a ir st r ea m in

p a ssin thr ou h t he a ir t er min l d v ic e

1.2.1.2.3 fr ee are (of a ir t er min l d v ic e): Sum of t he

smalest a rea s of t he cr os -se tio of a ll op enin s of t he a ir ter -

min l d vic e

1.2.1.2.4

c or e of a g le: Tha t p a rt of a grile loc a t ed insid a

con e sh t p la ne c urv e of minimum le gt h of c nto r , insid

w hic a re a ll t he op enin s of t he g le

1.2.1.2.5 c r e a re (of a g le): Are lmit ed b y t he p la ne

c urv e d f in d ab ove

mea sur ed a rea s of ea c h o e in thr ou h w hic t he a ir c a n

pa ss

1.2.1.2.7 f r ee are r at io (of a g le): The r at io of t he f r ee

a re to t he c r e a rea

l2.1.2.8 A k va lu (of a n air ter min l d v ic e): The q ot ie t

r esult ant from mea sur ed a ir flow ra t e a nd mea sured air veloc it y

a s d t er min d in a sp cif ie ma n r w ith a sp c if ie instru-

me t

1.2.1.3 Asp c t a d vane r atios

1.2.1.3.1

a sp ec t r atio (of a r ec t a ng la r air t er mina l d v ic e) :

The r atio of t he la rger sid to t he smaler sid of t he rect an ula r

1.2.1.4.3 in u e air : A ir flow from t he t r ea t ed sp a ce

in u e b y t he sup p ly a ir from a sup p ly a ir t er min l d v ic e

1.2.1.4.4 ex haust a ir : A ir lea vin a n ex ha ust air t er mina l

d v ic e into a d w nstr ea m d ct

1) An ex e D is b ein d velop ed b y ISO/T C WI/SC 1a nd w il b e a dd d w he a p prov ed

Trang 4

1.2.1.5

Sp cif ic t er ms r ela t in to air difusio r a t in 1.2.1.5.8 lo a l mea sur ed air v eloc it y : Mea sured va lu of

loc al a ir v eloc it y

1.2.1.5.1 sup p ly t e p ra t ure difer ential Alg b ra ic dif

f er en e b et wee t he sup p ly a ir t e p ra t ure a nd t he mea n

mea sur ed a ir t e p ra t ure of t he o c upie zo e

1.2.1.5.2 ex haust t e p r a t ure difer ential Alg b ra ic dif

f er enc e b et wee t he ex ha ust a ir t emp ra t ure a d t he mea n

mea sur ed air t e p ra t ure of t he o c upie zo e

1.2.1.5.3 mea n mea sured air t e p ra t ur e of t he OC-

c upie zo e: A r it h et ic al average of t he mea sured va lu s of

a ir t e p r a t ure w ithin t he o c upie zo e

1.2.1.5.4 t emp ra t ure difer ential w ithin t he o c upie

zo e: L a rgest va lu of t he difer en e b et we n mea sured a ir

t e p er a t ure w ithin t he o c upie zo e

1.2.1.5.9 e velop e: Ge met r ica l sur fa e in a t rea t ed sp a c e

w her e t he loc al mea sured a ir v eloc it y ha s t he sa me va lu a nd is

t he ref er enc e v eloc it y a ssoc ia t ed w ith this e velop e

1.2.1.5.10 r oom a ir v eloc it y : V a lu of veloc it y c nv entio -

a lly d rived from t he v ario s lo a l mea sured air v eloc it ies w ithin

t he oc cu ie zo e

1.2.1.5.1 f r ee a re v eloc it y : Primary a ir flow ra t e div id d

b y t he f r ee a re of a sup p ly air ter min l d v ic e

Ex ha ust air flow div id d b y t he fr ee a re of a n ex ha ust a ir ter -

min l d v ic e

1.2.1.5.5 p r ima r y a ir flow r a t e: Volume of air e t er i g a

sup p ly air t er mina l d vic e in u it t ime

1.2.1.5.8 ex ha ust a ir flow r a t e: Volume of air lea vin a n

ex ha ust a ir t er mina l d vic e in u it time

1.2.1.5.12 thr ow (or a sup p ly a ir t er mina l d v ic e) : Ma x imum

dist a nc e b et we n t he c nt r e of t he c r e a d a ola ne w hic is

t a ng nt to a sp c if ie e velop e, su h a s 0,2 ’m/s, 0,5 m

et c a d p rpe dic ula r to t he int en e dir ectio of flow

1.2.1.5.7

loc al a ir v eloc it y : Ma gnit ud of t he t ime-a v era ge

v ec t or of veloc it y a t a p int of a n air st r ea m

The v eloc it y v ec t or (a d t her efor e its t hree mut ua lly p rpe -

dic lar c mp n nt s U, v, W)in any p int of a t ur bule t st r ea m

is su mit t ed to flu tu tio s w ith resp ec t to time The time-

avera ge v ec t or of veloc it y is a v ec t or for w hic ea c h c m-

p n nt is a verage w ith resp c t to time The c omp n nts b e-

t he loc al air v eloc it y is th r efor e:

1.2.1.5.13 dr op (or a sup p ly air t er mina l d vic e) : V ert ic a l

dist a nc e b et we n t he low est h r izo ta l p lane t a ng nt to a

sp c if ie e velop e, su h a s 0,2 m/s, 0,5 m/s, et c a nd t he

c nt r e of t he c r e

1.2.1.5.14 r ise (or a sup p ly a ir ter min l d vic e) : V ert ic a l

dist a nc e b et we n t he hig est h r izo t al p la ne t a ng nt to a

sp c if ie e velop e, su h a s 0.2 m/s, 0,5 m/s, et c a nd t he

c nt r e of t he c r e

1.2.1.5.15 sprea d (or a sup p ly air t er mina l d vic e) : Ma x i-

mum dist a nc b et we n tw o v ert ic a l p la nes t a ng nt to a

p r pe dic ula r to a p lane thr ou h t he c ent re of t he c r e

T here may b e tw o difere t spr ea ds, n t a l a y s ea ua l : On for

&2 + i7 + w2

t he lef sid , t he oth r for t he r i ht sid (c nsid r ed w he lo k-

in a t t he t rea t ed sp a c e from t he sup p ly air t er min l d v ic e)

Trang 5

Heig t of tet room or in t a lla t io

L n th o f te t room or int a lla tio

A bs lute st a tic presure

A tmo p e c presure

St atic ga ug presure (p - pa )

St ag a tio (or abs lut e t ot a l) presure

Tot al presure (p, - pa )

V eloc it y presure Q $

Presure dif ferenc e (or a presure differenc e d vic e)

V olume rat e of flo w

Trang 6

2 In t rume t a t io

2.2.1.3 C ibr a t io sta nd r ds sha ll b e:

a ) for inst r ume ts w ith t he ra ng 1,2 to 2 Pa , a micr o-

ma nomet er a c c ura t e to f 0,2 Pa ;

ac c urac ies :

ma nomet er a c c ura t e to + 2,5 Pa (h o gaug or micr o-

A ll met ho s me t in t he r eq ir eme t s of IS0 5 21 ) w il me t

t he a c c ur a c ies given ab ov a nd d n t req ire c albrat io

Alt erna t iv ely flow met e ma y b e c a lib r a t ed in sit u by mea ns of

t he pitot st at ic t ub e t ra v erse t ec hniq es d sc r ib ed in IS0

3 6 2)

2.1.2 Flow met e sha ll b e c hec ke a t int erv a ls a s a pp rop ria t e

b t n t ex cee in 2 mo ths T his c hec k ma y t a ke t he form of

o e of t he folow in :

a ) a dime sio a l c ec k for a ll flow met er s n t r eq ir i g

ca libr a t io ;

b) a c he k ca libr a t io over t heir ful ra ng usin t he

o gina l met ho employ ed for t he init ial c albr a t io of met e

2.2.1.1 The ma x imum sc a le int erv a l sh l n t b e grea t er t ha n

t he c ar act er istics lst ed for t he a c c omp a ny in ra ng of

b) 5 0 Pa w ith a v ert ic a l t ub e ma omet er

c) for instr ume ts w ith t he ra ng 5 0 Pa a nd u w a r ds, a

ma omet er a c c ura t e to f 2 Pa (v ert ica l ma ometer )

Mea sur eme t of t emp ra t ure sha ll b e b y mea ns of mer cur y-in-

gla ss t her momet e , r esist a nc th r momet er s or th r mo-

c ou les Instr ume ts sha ll b e gr a dua t ed or giv rea din s in

int erv a ls n t grea t er t ha 0,5 K a nd c a libra t ed to a n a c c ura c y of

0,2 K

2.4.1 The mea sur eme t of low v eloc it ies w ithin t rea t ed

sp a c es, to d t ermin air t er mina l d vic e p r f or ma c e

c ar act er istics sha ll b e ma de w it h a mea su n d vic e in a c r -

da nc e w ith ann x A

2.4.2 The me sur eme t of a ir t er min l d vic e v eloc it ies to

d t er min A T D3) v, v eloc it y c a r act er is cs sh l b e mad wit h

a mea surin d vic e in a cc or da nc e w ith ann x B

s p ly a ir t ermina l dev ic e

The pres ure r eq ir eme t of a n ATD is for a given valu of flow

ra t e d p n e t o t he typ e a nd size of t he d vic e a nd o t he

veloc it y pr of ile u st ream of t he d v ic e A sta nda r d t est d ct im-

me ia t ely u st rea m of t he ATD sha ll b e employ ed If a n inlet

d ct a rra ng me t or flow e ua lizin a d/or da mp in d vic e is

a n int egra l pa rt of a n AT D, t he t he st an ar d t est d ct sh l b e

emp loy ed im e ia t ely u st rea m of t he int egr a l inlet d ct or ac -

c es or y

3.1.1 The t est sy st em sh l c mp se a t lea st a fa , a mea ns

for c ntr oln t he a ir flow rat e, a flow ra t e mea su n d v ic e

a nd a st an ar d t est d ct for t he A TD Test s sha ll b e c r rie o t

u d r isot her mal c n itio s

3.1.2 Pr es ur e test s o t he ATD a lo e or ATD in c mbin t io

w it h flow e ua lizin a d/or da mpin d vic e sha ll b e c n u t ed

t o est a b lish a pr es ur e for a giv n air flow ra t e The a ir t er mina l

d vic e sha ll b e mo nte in o e of t he t w o t est insta llat io s

1) IS0 521, Air distr ibution an a ir difu ion - Rules to method of mea su g a ir flow ra t e in a n air han ln d ct

2 ) IS0 3 6, Mea sure ent of fluid f low in c losed con its - V eloc it y area met hod u in Pit ot st a t ic tubs

3) Ab brev ia t io sig if yin “air t er mina l d v ic e”

Trang 7

d sc rib d in 3.1.3 (se f ig r e 1) or 3.1.5 (se f ig r e 2) T o

w ith flow e ua lizin a d/or da mpin d v ic es in t he n r maly

op en p sitio Pr es ur e t est s o t he ATD sh l b e c lea rly

r ef erenc ed to any p sitio of a justme t

q ir eme t s o t est inst ala tio A : o e by mea surin st at ic

pr es ur e (se 3.1.31, t he ot her b y dir ect ly me su n t ot al

pr es ur e (se 3.1.4)

3.1.3 Mea sureme t of st at ic pr es ur e w ith t he first t est

inst ala tio A

The a ir t er min l d vic e sh l b e mo nte in a t est d ct w ith

cr os -se tio al dime sio s e ua l to t he n min l size of t he

d vic e or to t he d ct dime sio s n rmaly r ec om e d d b y t he

ma ufa tur er T his d ct sh l b e st r aig t a d sha ll in lu e a n

eficie t flow st r a ig t en r loc a t ed a t a p sit io a t lea st t hr ee

e uiva le t dia met e (De) from any pa r t of t he A TD It is r ec-

om e d d t hat st raig t en r c els have a n ax ial le gt h a t lea st

e ua l to six t imes t he h dr aulc diamet er of th ir cr os -se t io

3.1.3.1 The t est inst ala tio sh l b e g n ra lly c nstr ucte a s

sh w n in f ig r e 1 The p lane of me sur eme t sha ll b e a t 1,5

e uiva le t dia met er s u st rea m of t he AT D A st at ic pr es ure

t ra verse sh l b e t a ke o tw o or t ho o al dia met e in or der to

pr es ure a t t he selec t ed p int of t est in t he p la ne of mea sur eme t

sh l n t difer b y mor e t ha 10% from b t h t he ma x imum a nd

t he minimum va lu w ithin t he pres ur e mea sureme t p la ne

3.1.3.2 Re or d t he r esult s for a minimum of fo r air flow ra t es

reg la rly dist r ib t ed ov er t he up per h lf of t he w or kin ra ng

for ea c h ATD t est ed

3.1.3.3 The tot al pres ure in t he p lane of mea sur eme t sha ll

b e c nsid r ed to b e t h e ual to t he sum of t he mea sured

st at ic gaug pr es ure a nd t he v eloc it y pres ure c a lc ula t ed from

t he veloc it y ob t a in d b y div idin t he t est a ir flow ra t e b y t he

d ct cr os -se tio al a rea The pr es ur es so o t a in d ma y a lso

b e c r r ect ed to a sta nd r d a ir d nsit y of I2 k /ms

3.1.4 Dir ec t mea sureme t of t ot al pr es ur e w ith t he

first t est inst alat io A

The t est inst ala tio a d t he p la ne of mea sureme t sh l b e t he

sa me a s d sc rib d in fig r e 1a nd in 3.1.3 A pitot tube sh l b e

use for suc c es iv ely mea surin t he tot al pres ure a t f iv e p int s

in this p la ne These f iv e p int s a re dist r ib t ed a s sh w n in

fig r e 2 On p int is o t he d ct axis - t he oth r fo r p int s

a re loc at ed o t w o or t ho o al dia met e a t a dist an e fr om t he

d ct ax is e ual to 0,4 t imes t he dia met er of t he cr os -se tio

The t ot al pr es ur e sh l b e c nsid r ed a s t he mea n a t hmetic

va lu of t he f iv e t o l pres ure r ec r de me sureme t s The

pres ur es so o t a in d may a lso b e c r r ect ed to a sta nd r d a ir

mea sur eme t s sha ll b e ma de o dia go a ls w ith t heir le gt h

use a s t he r ef er enc ed dime sio s to loc a t e t he fo r su -

pleme t a ry p int s a s sh w n o fig r e 6

3.1.4.1 Re or d t he r esult s for a minimum of fo r a ir flow ra t es

reg la rly dist r ib t ed ov er t he u p er h lf of t he w or kin ra ng

for ea c h ATD t est ed The pr es ur e ma y b e c r r ect ed to

sta nda r d d nsit y

3.1.5 Mea sur eme t of st at ic pres ure w it h t he first

t est inst ala tio B

The t est insta llat io sha ll b e c nstr uct ed a s sh w n in fig r e 3,

su h t hat t he folow in e ua t io is satis e :

The ATD to b e t est ed sh l b e mo nt ed in a sh rt t est d ct

e ua l to t he n min l size of t he ATD a nd ha vin a le gt h e ua l

to De or 0,15 m, whic hev er is grea t er It is r ec mme d d t ha t

t he t est d ct sh uld have a c nic al e t r a nc e

The req ired pr es ur e sh l b e mea sured w ith a t lea st a sin le

wa ll st at ic t a p p in loc at ed w ithin 0,0 m of t he insid sur f ac

of t he ATD mo ntin p la t e

Eq a lizin se tio s sha ll b e prov id d w ithin t he c ha mb r to

g a ra nt ee t hat a rela t ively u iform flow, fr ee from sw ir l, ex ist s

in t he t est c ha mb er w ith t he ATD mo ntin p la t e remov ed

3.1.5.1 Rec or d t he r esults for a minimum of fo r a ir flow ra t es

reg la rly distr i ut ed over t he up p er h lf of t he w or kin ra ng

for ea c h ATD t est ed

3.1.5.2 The mea sur ed pres ure, ps, sha ll b e c nsid r ed to b e

t he tot al pr es ur e, pt a nd this pres ure may also b e c r r ect ed

to a st an ar d a ir d nsit y of I2 k /ms

3.1.6 Pr ese t a t io of da t a

3.1.6.1 The da t a sh l b e c r r ect ed to sta nd r d a ir c n itio s

a d t he pr es ur e r eq ireme t s of t he ATD d t er min d from a

gra p h of t he t o l pres ure v ersus t he air flow ra t e

3.1.6.2 The los c e icie t c sha ll b e c alc ula t ed from t he

folow in a p prop ria t e relat io ships, b ase u o t he pr es ures

mea sur ed u d r 3.1.3, 3.1.4 a nd 3.1.5:

[ = z + 1(se 3.1.3)

(se 3.1.4 a d 3.1.5)

Trang 8

w her e p S or J+ is t he mea sur ed q a nt it y a nd p d is c alc ula t ed

a s ? A ,

0

(w here b t h Q a d q a re a lso a t t he sa me t est c n itio s)

The sin le los c eficie t 5 ma y b e su s tut ed for t he gra p h of

tot al pres ure v ersus a ir v olume flow rat e

ex ha ust a ir t er mina l d vic e

The pr es ur e r eq ir eme t of a n ex ha ust ATD is for a giv n

va lu of flow ra t e d p n e t o t he typ e a nd size of t he d vic e

a d o t he v eloc it y pr of ile u st r ea m a nd d w nst r eam of t he

d v ic e A sta nd r d t est d ct im e ia t ely d w nst r eam of t he

ATD sha ll b e emp loy ed If a c on e t in d ct a r ra ng me t , flow

e ua lizin a d/or da mp in d vic e is a n int egra l pa rt of a n A TD,

th n t he st an ar d t est d ct sha ll b e employ ed im e ia t ely

d w nst r eam of t he int egra l c n ec tin d ct or a c c es ory

3.2.1 The test sy st e sha ll c mp se a t lea st a fa , a mea ns

for c ntr ol n t he a ir flow ra t e, a flow ra t e mea su n d vic e

a d a st an ar d t est d c t for t he AT D T est s sh l b e ca r r ie o t

u d r isoth r mal c n itio s

3.2.1.1 The d vic e u d r t est sh l b e mo nte in a simulat ed

w a ll or c ein sur fa e usin t he met ho of f ix in r ec mme d d

b y t he ma fa tur er For cir cular a nd sq a re A T D’s this sur f ac

sh l ex t en o a ll sid s of t he ATD to a t lea st 2 D, from t he

b u da r ies of t he AT D

For slots or simiar A T D’s, t he sur f ac sh l ex t en b y a t lea st

t w ic t he w idth of t he slot o ea c h sid of t he d v ic e

For sp ec ia l ex ha ust A TD’s (or ex amp le, h a t remova l

lumin ir es), w her e in t he p lane of t he c ein sur fa e t he vel-

o it y d es n t e x cee d 1 m/s, n ex t en e sur fa e is n c es a ry

3.2.2 Pr es ure t est s o t he ex ha ust ATD a lo e or in c ombin -

d vic es sh l b e c n u t ed to est a blsh a pr es ure for a given

a ir flow ra t e The a ir t er min l d vic e sh l b e mo nte in o e of

t he t est inst ala tio s d scrib d in 3.2.3 (se f ig r e 4) or 3.2.5

(se f ig r e 5)

T o d t ermin t he minimum pr es ur e, me sur eme t s sha ll b e

ma de w ith t he da mpin d vic e in t he n r ma lly op en p sit io

Pr es ur e t est s o t he ex ha ust ATD sha ll b e c lea rly r ef er en e to

any p sit io of a justme t

q ir eme t s o t est inst ala tio C: o e b y me su n st at ic

pr es ur e (se 3.2.31, t he ot her b y dir ect ly me su n t o l

pr es ur e (se 3.2.4)

3.2.3 Mea sureme t of st at ic pr es ur e w ith t he first

t est insta llat io C for ex ha ust ATD (ex c lu in a ir t r ansfer

d v ic es)

The a ir t er mina l d vic e sha ll b e mo nte in a t est d ct w ith a

cr os -se tio al dime sio e ua l to t he n min l size of t he

d vic e or to t he d ct dime sio s n r maly r ec omme d d b y t he

ma uf actur er s T his d ct sha ll b e st r a ig t a nd sha ll in lu e a n

eficie t flow st raig t en r lo a t ed a t a p sit io a t lea st 7.5

e uiva le t dia met e from any pa rt of t he ex ha ust A TD It is

r ec omme d d t hat st r a ig t en r c els have a n axial le gt h a t

lea st e ual to six t imes t he hy dr a ulc dia met er of th ir cr os -

se tio

3.2.3.1 The t est inst ala tio sh l b e g n ra lly c nstr ucte a s

sh w n in fig r e 4 T o est a blsh t he p la ne of mea sur eme t in t he

mea sur eme t s sha ll b e ma de a t inc r eme ts of n t les t ha

1 D, d w nstr ea m of t he d vic e u ti t he ra t e of c ha ng b e-

t wee t he me sur eme t s is su st a nt ia lly zero A pr es ur e

t ra v erse sha ll b e t a ke o tw o or t ho o al dia met ers in or der to

o t a in t he ma x imum a nd minimum v a lu s The mea sur ed

pr es ur e a t t he selec t ed p int of t est in t he p la ne of mea sure-

me t sh l n t difer mor e t ha n 10% from b t h t he ma x imum

a nd t he minimum valu w ithin t he pr es ur e mea sur eme t

p la ne

3.2.3.2 Rec or d t he r esult s for a minimum of fo r air flow ra t es

reg la rly distr i ute ov er t he up p er h lf of t he w or kin ra ng

for eac h ATD t est ed

3.2.3.3 The st at ic pres ure r eq ir eme t of t he d vic e sh l b e

o t a in d b y c r r ect in for t he sta t ic pr es ur e c ha ng a lo g t he

d ct le gt h from t he e u t io :

Pso = & - (0,0 LID,) p

where

P

is t he st at ic pr es ur e (n ga t ive) mea sured o t he axis

of t he d ct in t he se t io where it b egins n t to vary

3.2.3.4 The t o l pr es ur e in t he p la ne of mea sur eme t sh l

b e c nsid r ed e ua l to t he sum of t he mea sur ed st a tic pr es ur e

a nd t he veloc it y pres ure c a lc ula t ed from t he v eloc it y o t a in d

by div idin t he t est air flow ra t e d ct cr os -se t io al a rea The

pr es ures so o t a in d may a lso b e c r r ect ed to a st an ar d d n-

sit y of I2 k /ma

3.2.4 Dir ect mea sureme t of tot al pres ur e w ith t he

first t est insta llat io C, for ex ha ust ATD

The t est insta llat io sha ll b e t he sa me a s d sc r ib d in f ig r e 4

a nd in 3.2.3

st at ic t ub e sha ll b e use sha ll b e t he sa me a s d sc rib d in

3.2.3.1 Mea sureme t s of t o l a nd st at ic pr es ur e sha ll b e

Trang 9

ma de a t t he sa me f iv e p int s in t he p la ne a s d fin d in 3.1.4 a nd

for suc c es iv e p la nes a s d fin d in 3.2.3.1 If t he ma x imum

disc r epa nc y in t he st a tic pr es ur e va lu for t hese f iv e mea sured

p ints d es n t exce ed tw o t enths of t he mea n st at ic pr es ure

mea sur ed in t he d ct, t he va lu of t he mea n t ot al pr es urep,

use to c a lc ula t e t he total pr es ur e los sh l b e t he mea n

a r it h et ic al va lu of t he t o l pres ure da t a o t a in d for ea c h

of t he f iv e p ints

3.2.4.2 Re or d t he r esult s for a minimum of fo r a ir flow ra t es

re ula rly dist r ib t ed ov er t he u p er h lf of t he w or kin ra ng

for ea c h ATD t est ed

3.2.4.3 The t o l pres ure req ir eme t of t he d vic e sha ll b e

o t a in d by c r r ect in for t he tot al pres ure c ha ng a lo g t he

d ct le gt h from t he e ua t io :

pt, = Pt -0 2 L /&b,

The pres ure so o t a in d may also b e c r r ect ed to a st an ar d

d nsit y of I2 k lms

3.2.5 Me sur eme t of st a tic pr es ure w ith t he first

insta llat io D for ex ha ust ATD

The t est inst ala tio sh l b e c nstr ucte a s sh w n in fig r e 5

NOT E - A s t he n r mal d nsit y of t he a ir e = 1,2 k /ms, t he

for mula b c omes

The ATD to b e t est ed sha ll b e mo nte in a sh r t t est d ct

e ual to t he n min l size of t he ATD a d ha vin a le gt h e ua l

to De or 0,15 m, w hic hev er is grea t er

The r eq ir ed pres ure sha ll b e mea sur ed w ith a t lea st a sin le

wa ll st a t ic t a p p in lo a t ed w ithin 0,0 m of t he insid sur f ac of

t he ATD mo ntin p la t e

Eq a lizin se t io s sh l b e prov id d w ithin t he c ha mb r to

g a ra nt ee t ha t a rela t ively u iform flow, fr ee from sw ir l, ex ist s

in t he t est c ha mb r w ith t he ATD mo ntin p la t e remov ed

3.2.5.1 Re or d t he r esults for a minimum of fo r a ir flow rat es

reg la rly distr i ut ed over t he u p er h lf of t he w or kin ra ng

for ea ch ATD t est ed

3.2.5!2 The me sured pr es ur e, ps, sha ll b e c nsid r ed to b e

t he t o l pr es ur e, pt a d this pr es ur e may a lso b e c r r ec te

to a st an ar d air d nsit y of I2 k /ms

3.2.6 Prese t at io of da t a

3.2.6.1 The da t a sha ll b e c r r ecte to st an ar d air c n itio s

a nd t he pres ure req ireme t s of t he ATD d t er min d from a

gra p h of t he t ot al pr es ur e v ersus t he a ir flow r a t e

3.2.6.2 The los c eficie t [ sh l b e c a lc ula t ed from t he

folow in a pp rop ria t e r elat io ship b a se u o t he pres ur es

a re a lso a t t he sa me t est c n itio s)

The sin le los c eficie t [ ma y b e su s t u d for t he gra p h of

t ota l pr es ur e v ersus a ir v olume flow r a t e

3.3 Det er mina tio of a ir v eloc it y V , a nd t he

d vic e

3.3.1 The sa me t est inst ala tio use to mea sure pr es ur e

sh l b e use to mea sure v, a nd to c a lc ula t e A ,, se fig r es 1,

3, 4 a nd 5

3.3.2 The v, v eloc it y sha ll b e mea sured w ith a n a ir v eloc it y

met er selec t ed in ac c orda nc e w ith sp cif ic t io s in 2.4.2

3.3.2.1

Sp cif ic at io s for t he p sit io s a nd lo at io s of t he

air v eloc it y mea surin p int s a t t he air ter min l d vic e sh l b e

st a t ed w it h t he c r r esp n in vk v a lu s

3.3.2.2 The vk va lu s sha ll b e r ef er enc ed to t he sp c if ic a -

justme t p sit io of t he a ir t er min l d v ic e

3.3.2.3

For ea c h of t he t est a ir flow rat es, t he a t hmet ic mea n

of t he v eloc it ies mea sured to est a blsh v sha ll b e d t er min d

from mea sur eme t s t a ke a t t he n mb r a nd p sitio of p int s

o t he ATD a s sp cif ie by t he ma ufa tur er

3.3.2.4 The I$ va lu s sha ll b e c a lc ula t ed b y div idin t he

mea sur ed a ir flow ra t e b y t he mea n v k

3.3.3 A t est sh l b e c a r r ie o r for a minimum of fo r air flow

ra t e va lu s dist r ib t ed w ithin t he ra ng of t he air t er mina l

d vic e n min l c a pa c it y

Trang 10

3.3.4 The Ak valu may b e r ep r t ed a s t he a t h et ic mea n

for ea c h of t he mea sured a ir flow ra t es t est ed A sin le valu

sh l b e rep rt ed if t he va lu s c a lc ula t ed d n t difer by mor e

t ha 5% from t he mea n c a lc ula t ed va lu If t hese va lu s difer

b y mor e t ha n 5% from t he mea n, t heA k va lu sh l b e r ep rt ed

a s a fu ctio of flow r a t e

disc ha rge c ha ra c t eri t ic s of a s p ply A T D

The c ar act er istics of t he isoth r mal a ir disc harge from a n ATD

c a n b e d t er min d from me sur eme t s of t he thr ow (X I sprea d

(I) a nd dr op (2) u d r isoth r ma l c n itio s w ithin a sp cif ie

t est e v ir onme t

4.1 T est r oom

4.1.1 A ll mea sur eme t s sha ll b e ma de w ithin a n e c lose

sp a c e a nd this sp a ce sha ll b e t er me t he “est ro m”

4.1.2 The t est ro m size sh l fal w ithin t he folow in dime -

sio al st an ar d :

a ) The h ig t (h ) sha ll n t b e les t ha 2,8 m;

b) The w idth (b ) sha ll b e d t er min d from t he r elat io -

ship (I5 < b R < 2,2)

hi

c) The minimum le gt h (I) sha ll b e 7,5 m;

d) Dime sio s in t he ra ng of I = 7,5 m, b R = 5,6 m a nd

h, = 2,8 m, w il sat i fy a minimum t es n req ireme t

Howev er, a le gt h of 9 m w il a llow a la rger ra ng of u it

sizes to b e t est ed (Se fig r e 6.1

4.1.3 A ll sur fa es sha ll b e n r mal a t c r ner s a nd any sur fa es

over w hic t he sup p ly a ir p a t h flow s sh l b e smo th a nd flat

A ll lumin ir es a nd w in ow s sh l b e flush w ith t he sur fa e in

w hic t he a re mo nte

4.1.4 A ir sha ll b e ex ha ust ed from t he t est ro m a t a lo at io

awa from t he sup p ly a ir pa t h a nd o t of t he p la nes of

me sur eme t

mea ns of c ntr ol n t he air flow r a t e A flow ra t e me su n

d v ic e, a st an ar d t est d ct (irst t est inst alatio ) or a t est d ct

w hic w il prov id v va lu s w ithin 5% of t hose o t a in d in a

t est c n u t ed in ac c orda nc w it h 3.3

4.3 In t alla t ion of t he a ir t ermina l devic e

Termin l d v ic es c a n b e div id d into t hr ee broa d c la sses:

Cla ss I Devic es from w hic t he jet is es e t ia lly t hree

dime sio a l;

A ) n z les

B) g les a nd regist ers

Cla ss I Devic es from w hic t he jet flows ra dia lly a lo g a

sur fa e; c ein difuser s

Cla ss I Devic es from w hic t he jet is es e t ia lly tw o

dime sio al; ln ar g les, slots a nd ln ar difuser s

4.3.1 The a ir t er mina l d vic e sha ll b e inst ale (usin t he

met ho r ec om e d d by t he ma uf actur er ) in t he folow in

p sit io w it h t he se o d t est inst alat io (Se fig r e 6.1

4.3.1.1 Cla ss IA d vic es (n z les) sha ll b e mo nte in su h a

p sit io a s to prov id t he ma x imum thr ow w ith a minimum ef

fe t from a dja c ent b u d r i s, for e x amp le a t t he c ent re of o e

of t he sma ller test ro m w a lls

4.3.1.2 Cla ss IB d vic es (g les a d r egist e ) sha ll b e p -

sit io e o t he c ent re ln of o e of t he smaler w a lls of t he t est

ro m w ith t he in er up p er sur fa e of t he ATD 0,2 m from t he

c ein

4.3.1.3 Cla ss I d vic e (difusers) sh l b e mo nte flush w ith

t he mo nt in sur fa e a nd in a p sitio d f in d b y :

a ) difusers of r a dia l pa t t er n su h th t t he c ent r e of t he

t est d ct is n closer to any o e w a ll t ha n ap p rox imat ely

h lf t he w idth of t he t est ro m;

b) difuser s of dir ect io al pa t t ern sha ll b e t hat a s t y p ic a lly

a p p lie a nd inst ale in a cc or da c e w ith t he ma uf actur er ’s

4.3.1.4 Cla ss I d vic es (ln ar s) w he t est ed a s sid wa ll

A TD’s sha ll b e mo nte a s in 4.3.1.2 Slot AT D’s sha ll b e

mo nte a s Cla ss I or I whic hev er is a p p lic a b le A r tificial

sid w a lls sha ll b e emp loy ed w ith A T D’s t h w ould n r ma lly

spa n t he dist a nc b et we n tw o w a lls The minimum le gt h of

t he ATD t est ed sh l b e e ual to or grea t er t ha n I2 m w he

ar tif icial sid w a lls a re emp loy ed

4.3.2 The t est d ct sh l b e n r mal to t he sur f ac in w hic t he

a ir t er mina l d v ic es a re mo nte u les ot herw ise r ec mme -

d d by t he ma uf actur er

4.3.3 The hig est flow ra t e for a n ATD t h ma y b e ut ilze in

a given r oom size sh l b e lmite to t he o e for w hic t he max i-

mum air jet v eloc it y d es n t ex cee d I0 m/s a t a dist anc e of

1,0 m from t he b u da r y wa ll in t he dir ect io u d r

inv es g t io

4.4.1 T es n sh l c mme c afer st ea dy st a t e isoth r ma l

c n itio s have b ee a c hiev ed Su h c n itio s sh l b e sa id

to ex ist w he t e p ra t ur e-me su n prob s p la c ed a re in t he

folow in p sitio s :

a )

in t he sup p ly d ct, u st r ea m of t he air ter min l d v ic e;

b) a t t he c ent re of t he ex haust t er mina l d vic e;

a d in ic at e t emp r a t ur es t ha t d n t difer from ea c h oth r by

mor e t ha n 2 K for a p rio of 5 min p or to a nd a t any t ime

d r i g t he t es

Trang 11

4.4.2 The flow ra t e sha ll n t vary by mor e t ha f 2% b f or e

a nd d r i g t he t es

4.4.3 Any v eloc it y mea sur eme t s ma de w ithin t he f olow in

dist a nc es from a wa ll tow ar ds w hic t he air is flow in sha ll n t

b e use for r a t in p r poses

su st a nt ia lly difer ent flow r a t es for ea c h size of a ir ter min l

d vic e t est ed

4.5.1 T his t est is to d t er min u d r isoth r ma l c n itio s t he

t hr ow (X l, sp rea d (r) a nd dr op (Z) b y mea surin veloc it ies

w it hin t he a ir st r eam a t v a r io s dist an es awa from t he sup p ly

AT D The a ir v eloc it ies sha ll b e mea sured w it h a n instr ume t a s

sp cif ie in ann x A a d a n ex p lora t ory t ec hniq e sha ll b e use

t o d t ermin t he lo atio of t he air st rea m e v elop e(s) The

meth d A (se 4.5 ) or a lt e a t iv es giv n in a n x C sha ll b e

use

A v ert ic a l p la ne of ma x imum v eloc it y sh uld b e d t er min d

from a plot of t he lo i of p int s in t he disc ha r ge air st rea m a t a

u iform veloc it y w ithin t he ra ng of I0 to I5 m/s (ie isov el

for ATD disc ha rge st r eam a t u iform veloc it y in ra ng of I0 to

I5 m/s) Ty p ic a l o e t atio of v ert ic a l p la nes of ma x imum

v loc it y a re sh w n in fig r es 7A to 7F

4.5.3 V eloc it y mea sur eme t s sh l b e t a ke a t a minimum of

eig t dist an es from t he A TD, b t n t mor e f req e t ly t ha n a t

0,3 m int er v a ls, in t he p la ne of ma x imum veloc it y a s d t er -

min d in 4.5.2 These mea sur eme t s sha ll b egin a t a p int a t

w hic t he hig est v eloc it y is a t lea st 0,5 m/s grea t er t ha t he

t er min l veloc it y u d r c nsid r atio Se eral mea su n p si-

t io s in se u nc e in t he disc ha rge st rea m a t 2 , 7 , 15 , 2 5,

3 0, 6 0, 9 0 mm, et c awa from t he a dja c ent sur f ac or

st r eam c nt r eln a t ea c h dist a nc e o t lin d ab ov sha ll b e

re uir ed u ti t he hig est a ir st r ea m v eloc it y ha s b ee est a b-

lsh d

4.5.4 A t ea c h dist a nc e X from t he ATD for w hic t he v

v loc it y is me sured t he n n-dime sio al r elat io ship of vxlv,

a nd t he c r r esp n in valu of X dA k sha ll b e c a lc ula t ed w it h

t he r esults plot t ed a s a lo a t h ic fu ctio a s sh w n in

fig r e 8 (For a given ATD t he valu A , is su st a nt ia lly c ns-

t ant a d v, t y p ic a lly va ries w it h t he air flow r at e.)

4.5.4.1 In ana ly zin t he p r f or ma c of jet s, fo r major zo es

c a n b e distin uish d The may b e d fin d in ter ms of t he

ma x imum or c nt r eln veloc it y ex is n a t t he cr os -se tio b e-

in c nsid r ed a s folows:

Zo e 1:

A sh r t zo e, ex t en in a bo t fo r dia met e or

w idths from t he sup p ly air ter min l d vic e f a ce (or vn c n-

t r a c t a for o fic disc ha r ge), in w hic t he ma x imum v eloc it y

of t he a ir st r ea m r emains pra c t ic a lly u c ha ng d

dia met er s for r ou d sup p ly air t er mina l d v ic es or for r ec-

t a ng la r sup p ly air t er mina l d v ic es of smal a sp ec t r at io,

over most of w hic ma x imum v eloc it ies vary inversely a s t he

sq a re r oot of t he dist an e from t he sup p ly a ir t er min l

d vic e For rect a ng la r sup p ly air ter min l d vic es of la rge

a sp c t r atio, this zo e is elo ga t ed a nd ex t en s from a bo t

fo r w idt hs to a dist a nc ap p rox imat ely e ua l to t he w idth

mult iple b y fo r t imes t he a sp c t r at io

Zo e 3: A lo g zo e, of major e gin erin imp r t a nc , in

w hic t he ma x imum veloc it y va ries inversely a s t he dist a nc

from t he sup p ly a ir t er mina l d vic e T his zo e is ofe c a lle

t he zo e of fuly est a b lish d t ur bule t flow a nd may b e 2 to

10 diamet er s lo g (or e uiva le t diamet er s of e ual a rea s),

d p n in o t he sha p e a d a re of t he sup p ly a ir t er min l

d vic e, t he init ia l v eloc it y a d t he dime sio s of t he sp a ce

into w hic t he sup p ly a ir t er min l d vic e disc arges

Zo e 4: A ter min l zo e in w hic , in t he c a se of c nfin d

sp a c es, t he ma x imum v eloc it y d c rea ses a t a n inc rea sin

r a t e, or, in t he c a se of la rge sp a c es fr ee from wa ll efe ts,

t he ma x imum v eloc it y d c rea ses ra pidly in a f ew diamet ers

to t he veloc it y ra ng b low 0,2 m/s w hic is usua lly

rega r de a s s l air

4.5.5 The plot sha ll b e dr aw n thr ou h t he t est p int s w it h t he

slop e of t he plot e ua l in a ngle to t he r ef eren e slop e ln s

(zo es 2 a nd 3) in fig r e 8 T his sha ll b e rep ea t ed for a ll t est s in

this pr od ct series For low v v eloc it ies t he zo e 4 slo e sh l

b e dr aw n The slop e ln s sha ll b e dr aw n thr ou h t he t est

p int s; t he int e e tio s of t he zo e slop e ln s sh l b e d t er -

min d b y t he b st p os ible mat ch of t he t est p int s a nd t he

slop e ln The ln for ea c h t est ed ATD sh l b e plot t ed a nd

represe t a t ive of t he pr od ct se es If t he difer en e b et we n a

thr ow int erpolat ed b y t he me ia ln a nd t he ex p erime t a l

throw d es n t excee d f 2 %, t he this c r r elat io c a n b e

use to int erpola t e t he thr ow for a pr od ct se es

4.5.6 The thr ow dist anc e X for a given air flow ra t e may b e

b a se o any a p prop ria t e t er min l v eloc it y vx The v selec t ed

sh l b e r ef er enc ed in t he r ec r de da t a

4.5.7 The r atio of thr ow to sp rea d sha ll b e d t er min d from

t he plot of t he lo i of u iform veloc it y use to est a blsh t he

p la ne of ma x imum v eloc it y T his r at io sh l b e use to c a lc ula t e

t he sprea d a t oth r flow ra t es a nd v va lu s for t he ATD u d r

tes

4.5.8 The dr op sha ll b e d t ermin d a nd q a lifie in t he ma -

n r a s d sc r ib d in 4.5.7

NOT E - In c a ses of n n-symmet r ica l jets, a dit io al mea sur eme t s

sha ll b e ma de in va ry in p la nes to d t er min t he e velop e v eloc it ies

Trang 12

flo w rat e cnt rol an

flo w rat e meas ri g

Fig r e 2 - Dir ect me sur eme t of t ota l pres ure pitot t ub lo at io in first t est inst alat io “A”

for sup p ly or “C” for ex ha ust

Trang 13

Dime sio s in metres

Measure presure a lo g c ent re ln

rat e measri g d vic e

Trang 14

Dime sio s in metres

flo w flo w c c

Ngày đăng: 05/04/2023, 14:38

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm