INT ERA T IO AL OGANIZA T IO FO ST ANDARDIZATIO MEYAWL 1HA R O PTAH3A R n0 CT AH~TM3AUW4 OGANlSATlO INT ERAT IOALE DE NR AL ISAT IO
Dist ribut ion et dif fusion d’a ir - Es a i en la boret oire et prksent a t ion des c a ra c t &ist iq es a kra ulq es des b uc hes d’air
3
g
De c ript o : air flow, aerody na mic s, air distr i utio , air dif f usio , air er minal d vic es, t ests, lab orat ory te ts, flo w meas r eme t, flo w ra t e,
p resure meas r eme t, velocit y meas r eme t, d f initio s
Trang 2IS0 (h Inter nat io al O a niza t io for St a nd rdizat io ) is a w or l w id f ed r at io of
na t io al st an ar ds b dies (IS0 memb r b dies) The w or k of d velop in Inter nat io al
Sta nd r ds is ca r r ie o t thr ou h IS0 t ec hnica l c m itt ees Every memb r b od
int er est ed in a su jec t for w hic a t ec hnica l c m it t ee ha s b ee a t ho ze ha s t he
rig t to b e represe t ed o t hat c mmit t e Int er nat io al orga niza t io s, g v ernme t a l
a nd n n-g v er nme t al in laiso w it h ISO, a lso t a ke pa rt in t he w or k
Draf Int e a tio a l St a nd r ds a dop t ed by t he t ec nic al c m it t ees a re c ir c ulat ed to
t he memb er b dies for a p p rova l b f or e t heir a c c ep t a nc e a s Inter nat io al St a nd r ds b y
t he IS0 Co n i
Int er nat io al St an a r d IS0 5 19 wa s d velop ed by T ec hnic a l Commit t ee ISO/T C 14 ,
Air dist ribut ion a nd a ir dif f usion, a nd wa s cir culat ed to t he memb r b dies in
Trang 3A ir dist ribut ion a nd a ir dif f usion - L a bora t ory
1.1 Sc op e a nd field of a pplc a t io
T his Int er nat io al St a nd rd is int en e to st a nda rdize
la bora t ory a er ody na mic t es n a nd r a t in of a ir t er mina l
d v ic es, in lu in t he sp cif ic t io of suit a b le t est f acit ies a nd
mea sureme t t ec hniq es
T his Int er nat io al St an a r d gives o ly t est s for t he a sses me t
of c a r act er is cs of t he a ir ter min l d vic es u d r isot her mal
c n itio s An e 01) gives sp cif ic atio s for a su p leme t a ry
ditio s
1.2 Definitio s
All d finitio s a re in a cc or da c e w ith IS0 3 5 a nd t he folow-
in
1.2.1 Fu ctio al c ar ac t er is c s of a ir t er min l d vic es
w hic t he a ir t er mina l d vic e is to b e fite
NOT E - For a n air difuser, t he n min l size is g n ra lly k ow n a s
n c k size
1.2.1.2 Cor e a d sp c if ic a rea s
1.2.1.2.1 c r e of a n a ir t ermin l d v ic e: T ha t pa rt of a n a ir
t er min l d vic e loc a t ed w ithin a con e sh t sur f ac of
minimum a re insid of w hic a re a ll t he o e in s of t he a ir ter -
min l d vic e thr ou h w hic t he a ir c a n pa ss
1.2.1.2.2 ef f ect iv e a re (of a n a ir t er mina l d v ic e) : Sma llest
n t are of a n a ir t er min l d vic e ut ilze by t he a ir st r ea m in
p a ssin thr ou h t he a ir t er min l d v ic e
1.2.1.2.3 fr ee are (of a ir t er min l d v ic e): Sum of t he
smalest a rea s of t he cr os -se tio of a ll op enin s of t he a ir ter -
min l d vic e
1.2.1.2.4
c or e of a g le: Tha t p a rt of a grile loc a t ed insid a
con e sh t p la ne c urv e of minimum le gt h of c nto r , insid
w hic a re a ll t he op enin s of t he g le
1.2.1.2.5 c r e a re (of a g le): Are lmit ed b y t he p la ne
c urv e d f in d ab ove
mea sur ed a rea s of ea c h o e in thr ou h w hic t he a ir c a n
pa ss
1.2.1.2.7 f r ee are r at io (of a g le): The r at io of t he f r ee
a re to t he c r e a rea
l2.1.2.8 A k va lu (of a n air ter min l d v ic e): The q ot ie t
r esult ant from mea sur ed a ir flow ra t e a nd mea sured air veloc it y
a s d t er min d in a sp cif ie ma n r w ith a sp c if ie instru-
me t
1.2.1.3 Asp c t a d vane r atios
1.2.1.3.1
a sp ec t r atio (of a r ec t a ng la r air t er mina l d v ic e) :
The r atio of t he la rger sid to t he smaler sid of t he rect an ula r
1.2.1.4.3 in u e air : A ir flow from t he t r ea t ed sp a ce
in u e b y t he sup p ly a ir from a sup p ly a ir t er min l d v ic e
1.2.1.4.4 ex haust a ir : A ir lea vin a n ex ha ust air t er mina l
d v ic e into a d w nstr ea m d ct
1) An ex e D is b ein d velop ed b y ISO/T C WI/SC 1a nd w il b e a dd d w he a p prov ed
Trang 41.2.1.5
Sp cif ic t er ms r ela t in to air difusio r a t in 1.2.1.5.8 lo a l mea sur ed air v eloc it y : Mea sured va lu of
loc al a ir v eloc it y
1.2.1.5.1 sup p ly t e p ra t ure difer ential Alg b ra ic dif
f er en e b et wee t he sup p ly a ir t e p ra t ure a nd t he mea n
mea sur ed a ir t e p ra t ure of t he o c upie zo e
1.2.1.5.2 ex haust t e p r a t ure difer ential Alg b ra ic dif
f er enc e b et wee t he ex ha ust a ir t emp ra t ure a d t he mea n
mea sur ed air t e p ra t ure of t he o c upie zo e
1.2.1.5.3 mea n mea sured air t e p ra t ur e of t he OC-
c upie zo e: A r it h et ic al average of t he mea sured va lu s of
a ir t e p r a t ure w ithin t he o c upie zo e
1.2.1.5.4 t emp ra t ure difer ential w ithin t he o c upie
zo e: L a rgest va lu of t he difer en e b et we n mea sured a ir
t e p er a t ure w ithin t he o c upie zo e
1.2.1.5.9 e velop e: Ge met r ica l sur fa e in a t rea t ed sp a c e
w her e t he loc al mea sured a ir v eloc it y ha s t he sa me va lu a nd is
t he ref er enc e v eloc it y a ssoc ia t ed w ith this e velop e
1.2.1.5.10 r oom a ir v eloc it y : V a lu of veloc it y c nv entio -
a lly d rived from t he v ario s lo a l mea sured air v eloc it ies w ithin
t he oc cu ie zo e
1.2.1.5.1 f r ee a re v eloc it y : Primary a ir flow ra t e div id d
b y t he f r ee a re of a sup p ly air ter min l d v ic e
Ex ha ust air flow div id d b y t he fr ee a re of a n ex ha ust a ir ter -
min l d v ic e
1.2.1.5.5 p r ima r y a ir flow r a t e: Volume of air e t er i g a
sup p ly air t er mina l d vic e in u it t ime
1.2.1.5.8 ex ha ust a ir flow r a t e: Volume of air lea vin a n
ex ha ust a ir t er mina l d vic e in u it time
1.2.1.5.12 thr ow (or a sup p ly a ir t er mina l d v ic e) : Ma x imum
dist a nc e b et we n t he c nt r e of t he c r e a d a ola ne w hic is
t a ng nt to a sp c if ie e velop e, su h a s 0,2 ’m/s, 0,5 m
et c a d p rpe dic ula r to t he int en e dir ectio of flow
1.2.1.5.7
loc al a ir v eloc it y : Ma gnit ud of t he t ime-a v era ge
v ec t or of veloc it y a t a p int of a n air st r ea m
The v eloc it y v ec t or (a d t her efor e its t hree mut ua lly p rpe -
dic lar c mp n nt s U, v, W)in any p int of a t ur bule t st r ea m
is su mit t ed to flu tu tio s w ith resp ec t to time The time-
avera ge v ec t or of veloc it y is a v ec t or for w hic ea c h c m-
p n nt is a verage w ith resp c t to time The c omp n nts b e-
t he loc al air v eloc it y is th r efor e:
1.2.1.5.13 dr op (or a sup p ly air t er mina l d vic e) : V ert ic a l
dist a nc e b et we n t he low est h r izo ta l p lane t a ng nt to a
sp c if ie e velop e, su h a s 0,2 m/s, 0,5 m/s, et c a nd t he
c nt r e of t he c r e
1.2.1.5.14 r ise (or a sup p ly a ir ter min l d vic e) : V ert ic a l
dist a nc e b et we n t he hig est h r izo t al p la ne t a ng nt to a
sp c if ie e velop e, su h a s 0.2 m/s, 0,5 m/s, et c a nd t he
c nt r e of t he c r e
1.2.1.5.15 sprea d (or a sup p ly air t er mina l d vic e) : Ma x i-
mum dist a nc b et we n tw o v ert ic a l p la nes t a ng nt to a
p r pe dic ula r to a p lane thr ou h t he c ent re of t he c r e
T here may b e tw o difere t spr ea ds, n t a l a y s ea ua l : On for
&2 + i7 + w2
t he lef sid , t he oth r for t he r i ht sid (c nsid r ed w he lo k-
in a t t he t rea t ed sp a c e from t he sup p ly air t er min l d v ic e)
Trang 5Heig t of tet room or in t a lla t io
L n th o f te t room or int a lla tio
A bs lute st a tic presure
A tmo p e c presure
St atic ga ug presure (p - pa )
St ag a tio (or abs lut e t ot a l) presure
Tot al presure (p, - pa )
V eloc it y presure Q $
Presure dif ferenc e (or a presure differenc e d vic e)
V olume rat e of flo w
Trang 62 In t rume t a t io
2.2.1.3 C ibr a t io sta nd r ds sha ll b e:
a ) for inst r ume ts w ith t he ra ng 1,2 to 2 Pa , a micr o-
ma nomet er a c c ura t e to f 0,2 Pa ;
ac c urac ies :
ma nomet er a c c ura t e to + 2,5 Pa (h o gaug or micr o-
A ll met ho s me t in t he r eq ir eme t s of IS0 5 21 ) w il me t
t he a c c ur a c ies given ab ov a nd d n t req ire c albrat io
Alt erna t iv ely flow met e ma y b e c a lib r a t ed in sit u by mea ns of
t he pitot st at ic t ub e t ra v erse t ec hniq es d sc r ib ed in IS0
3 6 2)
2.1.2 Flow met e sha ll b e c hec ke a t int erv a ls a s a pp rop ria t e
b t n t ex cee in 2 mo ths T his c hec k ma y t a ke t he form of
o e of t he folow in :
a ) a dime sio a l c ec k for a ll flow met er s n t r eq ir i g
ca libr a t io ;
b) a c he k ca libr a t io over t heir ful ra ng usin t he
o gina l met ho employ ed for t he init ial c albr a t io of met e
2.2.1.1 The ma x imum sc a le int erv a l sh l n t b e grea t er t ha n
t he c ar act er istics lst ed for t he a c c omp a ny in ra ng of
b) 5 0 Pa w ith a v ert ic a l t ub e ma omet er
c) for instr ume ts w ith t he ra ng 5 0 Pa a nd u w a r ds, a
ma omet er a c c ura t e to f 2 Pa (v ert ica l ma ometer )
Mea sur eme t of t emp ra t ure sha ll b e b y mea ns of mer cur y-in-
gla ss t her momet e , r esist a nc th r momet er s or th r mo-
c ou les Instr ume ts sha ll b e gr a dua t ed or giv rea din s in
int erv a ls n t grea t er t ha 0,5 K a nd c a libra t ed to a n a c c ura c y of
0,2 K
2.4.1 The mea sur eme t of low v eloc it ies w ithin t rea t ed
sp a c es, to d t ermin air t er mina l d vic e p r f or ma c e
c ar act er istics sha ll b e ma de w it h a mea su n d vic e in a c r -
da nc e w ith ann x A
2.4.2 The me sur eme t of a ir t er min l d vic e v eloc it ies to
d t er min A T D3) v, v eloc it y c a r act er is cs sh l b e mad wit h
a mea surin d vic e in a cc or da nc e w ith ann x B
s p ly a ir t ermina l dev ic e
The pres ure r eq ir eme t of a n ATD is for a given valu of flow
ra t e d p n e t o t he typ e a nd size of t he d vic e a nd o t he
veloc it y pr of ile u st ream of t he d v ic e A sta nda r d t est d ct im-
me ia t ely u st rea m of t he ATD sha ll b e employ ed If a n inlet
d ct a rra ng me t or flow e ua lizin a d/or da mp in d vic e is
a n int egra l pa rt of a n AT D, t he t he st an ar d t est d ct sh l b e
emp loy ed im e ia t ely u st rea m of t he int egr a l inlet d ct or ac -
c es or y
3.1.1 The t est sy st em sh l c mp se a t lea st a fa , a mea ns
for c ntr oln t he a ir flow rat e, a flow ra t e mea su n d v ic e
a nd a st an ar d t est d ct for t he A TD Test s sha ll b e c r rie o t
u d r isot her mal c n itio s
3.1.2 Pr es ur e test s o t he ATD a lo e or ATD in c mbin t io
w it h flow e ua lizin a d/or da mpin d vic e sha ll b e c n u t ed
t o est a b lish a pr es ur e for a giv n air flow ra t e The a ir t er mina l
d vic e sha ll b e mo nte in o e of t he t w o t est insta llat io s
1) IS0 521, Air distr ibution an a ir difu ion - Rules to method of mea su g a ir flow ra t e in a n air han ln d ct
2 ) IS0 3 6, Mea sure ent of fluid f low in c losed con its - V eloc it y area met hod u in Pit ot st a t ic tubs
3) Ab brev ia t io sig if yin “air t er mina l d v ic e”
Trang 7d sc rib d in 3.1.3 (se f ig r e 1) or 3.1.5 (se f ig r e 2) T o
w ith flow e ua lizin a d/or da mpin d v ic es in t he n r maly
op en p sitio Pr es ur e t est s o t he ATD sh l b e c lea rly
r ef erenc ed to any p sitio of a justme t
q ir eme t s o t est inst ala tio A : o e by mea surin st at ic
pr es ur e (se 3.1.31, t he ot her b y dir ect ly me su n t ot al
pr es ur e (se 3.1.4)
3.1.3 Mea sureme t of st at ic pr es ur e w ith t he first t est
inst ala tio A
The a ir t er min l d vic e sh l b e mo nte in a t est d ct w ith
cr os -se tio al dime sio s e ua l to t he n min l size of t he
d vic e or to t he d ct dime sio s n rmaly r ec om e d d b y t he
ma ufa tur er T his d ct sh l b e st r aig t a d sha ll in lu e a n
eficie t flow st r a ig t en r loc a t ed a t a p sit io a t lea st t hr ee
e uiva le t dia met e (De) from any pa r t of t he A TD It is r ec-
om e d d t hat st raig t en r c els have a n ax ial le gt h a t lea st
e ua l to six t imes t he h dr aulc diamet er of th ir cr os -se t io
3.1.3.1 The t est inst ala tio sh l b e g n ra lly c nstr ucte a s
sh w n in f ig r e 1 The p lane of me sur eme t sha ll b e a t 1,5
e uiva le t dia met er s u st rea m of t he AT D A st at ic pr es ure
t ra verse sh l b e t a ke o tw o or t ho o al dia met e in or der to
pr es ure a t t he selec t ed p int of t est in t he p la ne of mea sur eme t
sh l n t difer b y mor e t ha 10% from b t h t he ma x imum a nd
t he minimum va lu w ithin t he pres ur e mea sureme t p la ne
3.1.3.2 Re or d t he r esult s for a minimum of fo r air flow ra t es
reg la rly dist r ib t ed ov er t he up per h lf of t he w or kin ra ng
for ea c h ATD t est ed
3.1.3.3 The tot al pres ure in t he p lane of mea sur eme t sha ll
b e c nsid r ed to b e t h e ual to t he sum of t he mea sured
st at ic gaug pr es ure a nd t he v eloc it y pres ure c a lc ula t ed from
t he veloc it y ob t a in d b y div idin t he t est a ir flow ra t e b y t he
d ct cr os -se tio al a rea The pr es ur es so o t a in d ma y a lso
b e c r r ect ed to a sta nd r d a ir d nsit y of I2 k /ms
3.1.4 Dir ec t mea sureme t of t ot al pr es ur e w ith t he
first t est inst alat io A
The t est inst ala tio a d t he p la ne of mea sureme t sh l b e t he
sa me a s d sc rib d in fig r e 1a nd in 3.1.3 A pitot tube sh l b e
use for suc c es iv ely mea surin t he tot al pres ure a t f iv e p int s
in this p la ne These f iv e p int s a re dist r ib t ed a s sh w n in
fig r e 2 On p int is o t he d ct axis - t he oth r fo r p int s
a re loc at ed o t w o or t ho o al dia met e a t a dist an e fr om t he
d ct ax is e ual to 0,4 t imes t he dia met er of t he cr os -se tio
The t ot al pr es ur e sh l b e c nsid r ed a s t he mea n a t hmetic
va lu of t he f iv e t o l pres ure r ec r de me sureme t s The
pres ur es so o t a in d may a lso b e c r r ect ed to a sta nd r d a ir
mea sur eme t s sha ll b e ma de o dia go a ls w ith t heir le gt h
use a s t he r ef er enc ed dime sio s to loc a t e t he fo r su -
pleme t a ry p int s a s sh w n o fig r e 6
3.1.4.1 Re or d t he r esult s for a minimum of fo r a ir flow ra t es
reg la rly dist r ib t ed ov er t he u p er h lf of t he w or kin ra ng
for ea c h ATD t est ed The pr es ur e ma y b e c r r ect ed to
sta nda r d d nsit y
3.1.5 Mea sur eme t of st at ic pres ure w it h t he first
t est inst ala tio B
The t est insta llat io sha ll b e c nstr uct ed a s sh w n in fig r e 3,
su h t hat t he folow in e ua t io is satis e :
The ATD to b e t est ed sh l b e mo nt ed in a sh rt t est d ct
e ua l to t he n min l size of t he ATD a nd ha vin a le gt h e ua l
to De or 0,15 m, whic hev er is grea t er It is r ec mme d d t ha t
t he t est d ct sh uld have a c nic al e t r a nc e
The req ired pr es ur e sh l b e mea sured w ith a t lea st a sin le
wa ll st at ic t a p p in loc at ed w ithin 0,0 m of t he insid sur f ac
of t he ATD mo ntin p la t e
Eq a lizin se tio s sha ll b e prov id d w ithin t he c ha mb r to
g a ra nt ee t hat a rela t ively u iform flow, fr ee from sw ir l, ex ist s
in t he t est c ha mb er w ith t he ATD mo ntin p la t e remov ed
3.1.5.1 Rec or d t he r esults for a minimum of fo r a ir flow ra t es
reg la rly distr i ut ed over t he up p er h lf of t he w or kin ra ng
for ea c h ATD t est ed
3.1.5.2 The mea sur ed pres ure, ps, sha ll b e c nsid r ed to b e
t he tot al pr es ur e, pt a nd this pres ure may also b e c r r ect ed
to a st an ar d a ir d nsit y of I2 k /ms
3.1.6 Pr ese t a t io of da t a
3.1.6.1 The da t a sh l b e c r r ect ed to sta nd r d a ir c n itio s
a d t he pr es ur e r eq ireme t s of t he ATD d t er min d from a
gra p h of t he t o l pres ure v ersus t he air flow ra t e
3.1.6.2 The los c e icie t c sha ll b e c alc ula t ed from t he
folow in a p prop ria t e relat io ships, b ase u o t he pr es ures
mea sur ed u d r 3.1.3, 3.1.4 a nd 3.1.5:
[ = z + 1(se 3.1.3)
(se 3.1.4 a d 3.1.5)
Trang 8w her e p S or J+ is t he mea sur ed q a nt it y a nd p d is c alc ula t ed
a s ? A ,
0
(w here b t h Q a d q a re a lso a t t he sa me t est c n itio s)
The sin le los c eficie t 5 ma y b e su s tut ed for t he gra p h of
tot al pres ure v ersus a ir v olume flow rat e
ex ha ust a ir t er mina l d vic e
The pr es ur e r eq ir eme t of a n ex ha ust ATD is for a giv n
va lu of flow ra t e d p n e t o t he typ e a nd size of t he d vic e
a d o t he v eloc it y pr of ile u st r ea m a nd d w nst r eam of t he
d v ic e A sta nd r d t est d ct im e ia t ely d w nst r eam of t he
ATD sha ll b e emp loy ed If a c on e t in d ct a r ra ng me t , flow
e ua lizin a d/or da mp in d vic e is a n int egra l pa rt of a n A TD,
th n t he st an ar d t est d ct sha ll b e employ ed im e ia t ely
d w nst r eam of t he int egra l c n ec tin d ct or a c c es ory
3.2.1 The test sy st e sha ll c mp se a t lea st a fa , a mea ns
for c ntr ol n t he a ir flow ra t e, a flow ra t e mea su n d vic e
a d a st an ar d t est d c t for t he AT D T est s sh l b e ca r r ie o t
u d r isoth r mal c n itio s
3.2.1.1 The d vic e u d r t est sh l b e mo nte in a simulat ed
w a ll or c ein sur fa e usin t he met ho of f ix in r ec mme d d
b y t he ma fa tur er For cir cular a nd sq a re A T D’s this sur f ac
sh l ex t en o a ll sid s of t he ATD to a t lea st 2 D, from t he
b u da r ies of t he AT D
For slots or simiar A T D’s, t he sur f ac sh l ex t en b y a t lea st
t w ic t he w idth of t he slot o ea c h sid of t he d v ic e
For sp ec ia l ex ha ust A TD’s (or ex amp le, h a t remova l
lumin ir es), w her e in t he p lane of t he c ein sur fa e t he vel-
o it y d es n t e x cee d 1 m/s, n ex t en e sur fa e is n c es a ry
3.2.2 Pr es ure t est s o t he ex ha ust ATD a lo e or in c ombin -
d vic es sh l b e c n u t ed to est a blsh a pr es ure for a given
a ir flow ra t e The a ir t er min l d vic e sh l b e mo nte in o e of
t he t est inst ala tio s d scrib d in 3.2.3 (se f ig r e 4) or 3.2.5
(se f ig r e 5)
T o d t ermin t he minimum pr es ur e, me sur eme t s sha ll b e
ma de w ith t he da mpin d vic e in t he n r ma lly op en p sit io
Pr es ur e t est s o t he ex ha ust ATD sha ll b e c lea rly r ef er en e to
any p sit io of a justme t
q ir eme t s o t est inst ala tio C: o e b y me su n st at ic
pr es ur e (se 3.2.31, t he ot her b y dir ect ly me su n t o l
pr es ur e (se 3.2.4)
3.2.3 Mea sureme t of st at ic pr es ur e w ith t he first
t est insta llat io C for ex ha ust ATD (ex c lu in a ir t r ansfer
d v ic es)
The a ir t er mina l d vic e sha ll b e mo nte in a t est d ct w ith a
cr os -se tio al dime sio e ua l to t he n min l size of t he
d vic e or to t he d ct dime sio s n r maly r ec omme d d b y t he
ma uf actur er s T his d ct sha ll b e st r a ig t a nd sha ll in lu e a n
eficie t flow st raig t en r lo a t ed a t a p sit io a t lea st 7.5
e uiva le t dia met e from any pa rt of t he ex ha ust A TD It is
r ec omme d d t hat st r a ig t en r c els have a n axial le gt h a t
lea st e ual to six t imes t he hy dr a ulc dia met er of th ir cr os -
se tio
3.2.3.1 The t est inst ala tio sh l b e g n ra lly c nstr ucte a s
sh w n in fig r e 4 T o est a blsh t he p la ne of mea sur eme t in t he
mea sur eme t s sha ll b e ma de a t inc r eme ts of n t les t ha
1 D, d w nstr ea m of t he d vic e u ti t he ra t e of c ha ng b e-
t wee t he me sur eme t s is su st a nt ia lly zero A pr es ur e
t ra v erse sha ll b e t a ke o tw o or t ho o al dia met ers in or der to
o t a in t he ma x imum a nd minimum v a lu s The mea sur ed
pr es ur e a t t he selec t ed p int of t est in t he p la ne of mea sure-
me t sh l n t difer mor e t ha n 10% from b t h t he ma x imum
a nd t he minimum valu w ithin t he pr es ur e mea sur eme t
p la ne
3.2.3.2 Rec or d t he r esult s for a minimum of fo r air flow ra t es
reg la rly distr i ute ov er t he up p er h lf of t he w or kin ra ng
for eac h ATD t est ed
3.2.3.3 The st at ic pres ure r eq ir eme t of t he d vic e sh l b e
o t a in d b y c r r ect in for t he sta t ic pr es ur e c ha ng a lo g t he
d ct le gt h from t he e u t io :
Pso = & - (0,0 LID,) p
where
P
is t he st at ic pr es ur e (n ga t ive) mea sured o t he axis
of t he d ct in t he se t io where it b egins n t to vary
3.2.3.4 The t o l pr es ur e in t he p la ne of mea sur eme t sh l
b e c nsid r ed e ua l to t he sum of t he mea sur ed st a tic pr es ur e
a nd t he veloc it y pres ure c a lc ula t ed from t he v eloc it y o t a in d
by div idin t he t est air flow ra t e d ct cr os -se t io al a rea The
pr es ures so o t a in d may a lso b e c r r ect ed to a st an ar d d n-
sit y of I2 k /ma
3.2.4 Dir ect mea sureme t of tot al pres ur e w ith t he
first t est insta llat io C, for ex ha ust ATD
The t est insta llat io sha ll b e t he sa me a s d sc r ib d in f ig r e 4
a nd in 3.2.3
st at ic t ub e sha ll b e use sha ll b e t he sa me a s d sc rib d in
3.2.3.1 Mea sureme t s of t o l a nd st at ic pr es ur e sha ll b e
Trang 9ma de a t t he sa me f iv e p int s in t he p la ne a s d fin d in 3.1.4 a nd
for suc c es iv e p la nes a s d fin d in 3.2.3.1 If t he ma x imum
disc r epa nc y in t he st a tic pr es ur e va lu for t hese f iv e mea sured
p ints d es n t exce ed tw o t enths of t he mea n st at ic pr es ure
mea sur ed in t he d ct, t he va lu of t he mea n t ot al pr es urep,
use to c a lc ula t e t he total pr es ur e los sh l b e t he mea n
a r it h et ic al va lu of t he t o l pres ure da t a o t a in d for ea c h
of t he f iv e p ints
3.2.4.2 Re or d t he r esult s for a minimum of fo r a ir flow ra t es
re ula rly dist r ib t ed ov er t he u p er h lf of t he w or kin ra ng
for ea c h ATD t est ed
3.2.4.3 The t o l pres ure req ir eme t of t he d vic e sha ll b e
o t a in d by c r r ect in for t he tot al pres ure c ha ng a lo g t he
d ct le gt h from t he e ua t io :
pt, = Pt -0 2 L /&b,
The pres ure so o t a in d may also b e c r r ect ed to a st an ar d
d nsit y of I2 k lms
3.2.5 Me sur eme t of st a tic pr es ure w ith t he first
insta llat io D for ex ha ust ATD
The t est inst ala tio sh l b e c nstr ucte a s sh w n in fig r e 5
NOT E - A s t he n r mal d nsit y of t he a ir e = 1,2 k /ms, t he
for mula b c omes
The ATD to b e t est ed sha ll b e mo nte in a sh r t t est d ct
e ual to t he n min l size of t he ATD a d ha vin a le gt h e ua l
to De or 0,15 m, w hic hev er is grea t er
The r eq ir ed pres ure sha ll b e mea sur ed w ith a t lea st a sin le
wa ll st a t ic t a p p in lo a t ed w ithin 0,0 m of t he insid sur f ac of
t he ATD mo ntin p la t e
Eq a lizin se t io s sh l b e prov id d w ithin t he c ha mb r to
g a ra nt ee t ha t a rela t ively u iform flow, fr ee from sw ir l, ex ist s
in t he t est c ha mb r w ith t he ATD mo ntin p la t e remov ed
3.2.5.1 Re or d t he r esults for a minimum of fo r a ir flow rat es
reg la rly distr i ut ed over t he u p er h lf of t he w or kin ra ng
for ea ch ATD t est ed
3.2.5!2 The me sured pr es ur e, ps, sha ll b e c nsid r ed to b e
t he t o l pr es ur e, pt a d this pr es ur e may a lso b e c r r ec te
to a st an ar d air d nsit y of I2 k /ms
3.2.6 Prese t at io of da t a
3.2.6.1 The da t a sha ll b e c r r ecte to st an ar d air c n itio s
a nd t he pres ure req ireme t s of t he ATD d t er min d from a
gra p h of t he t ot al pr es ur e v ersus t he a ir flow r a t e
3.2.6.2 The los c eficie t [ sh l b e c a lc ula t ed from t he
folow in a pp rop ria t e r elat io ship b a se u o t he pres ur es
a re a lso a t t he sa me t est c n itio s)
The sin le los c eficie t [ ma y b e su s t u d for t he gra p h of
t ota l pr es ur e v ersus a ir v olume flow r a t e
3.3 Det er mina tio of a ir v eloc it y V , a nd t he
d vic e
3.3.1 The sa me t est inst ala tio use to mea sure pr es ur e
sh l b e use to mea sure v, a nd to c a lc ula t e A ,, se fig r es 1,
3, 4 a nd 5
3.3.2 The v, v eloc it y sha ll b e mea sured w ith a n a ir v eloc it y
met er selec t ed in ac c orda nc e w ith sp cif ic t io s in 2.4.2
3.3.2.1
Sp cif ic at io s for t he p sit io s a nd lo at io s of t he
air v eloc it y mea surin p int s a t t he air ter min l d vic e sh l b e
st a t ed w it h t he c r r esp n in vk v a lu s
3.3.2.2 The vk va lu s sha ll b e r ef er enc ed to t he sp c if ic a -
justme t p sit io of t he a ir t er min l d v ic e
3.3.2.3
For ea c h of t he t est a ir flow rat es, t he a t hmet ic mea n
of t he v eloc it ies mea sured to est a blsh v sha ll b e d t er min d
from mea sur eme t s t a ke a t t he n mb r a nd p sitio of p int s
o t he ATD a s sp cif ie by t he ma ufa tur er
3.3.2.4 The I$ va lu s sha ll b e c a lc ula t ed b y div idin t he
mea sur ed a ir flow ra t e b y t he mea n v k
3.3.3 A t est sh l b e c a r r ie o r for a minimum of fo r air flow
ra t e va lu s dist r ib t ed w ithin t he ra ng of t he air t er mina l
d vic e n min l c a pa c it y
Trang 103.3.4 The Ak valu may b e r ep r t ed a s t he a t h et ic mea n
for ea c h of t he mea sured a ir flow ra t es t est ed A sin le valu
sh l b e rep rt ed if t he va lu s c a lc ula t ed d n t difer by mor e
t ha 5% from t he mea n c a lc ula t ed va lu If t hese va lu s difer
b y mor e t ha n 5% from t he mea n, t heA k va lu sh l b e r ep rt ed
a s a fu ctio of flow r a t e
disc ha rge c ha ra c t eri t ic s of a s p ply A T D
The c ar act er istics of t he isoth r mal a ir disc harge from a n ATD
c a n b e d t er min d from me sur eme t s of t he thr ow (X I sprea d
(I) a nd dr op (2) u d r isoth r ma l c n itio s w ithin a sp cif ie
t est e v ir onme t
4.1 T est r oom
4.1.1 A ll mea sur eme t s sha ll b e ma de w ithin a n e c lose
sp a c e a nd this sp a ce sha ll b e t er me t he “est ro m”
4.1.2 The t est ro m size sh l fal w ithin t he folow in dime -
sio al st an ar d :
a ) The h ig t (h ) sha ll n t b e les t ha 2,8 m;
b) The w idth (b ) sha ll b e d t er min d from t he r elat io -
ship (I5 < b R < 2,2)
hi
c) The minimum le gt h (I) sha ll b e 7,5 m;
d) Dime sio s in t he ra ng of I = 7,5 m, b R = 5,6 m a nd
h, = 2,8 m, w il sat i fy a minimum t es n req ireme t
Howev er, a le gt h of 9 m w il a llow a la rger ra ng of u it
sizes to b e t est ed (Se fig r e 6.1
4.1.3 A ll sur fa es sha ll b e n r mal a t c r ner s a nd any sur fa es
over w hic t he sup p ly a ir p a t h flow s sh l b e smo th a nd flat
A ll lumin ir es a nd w in ow s sh l b e flush w ith t he sur fa e in
w hic t he a re mo nte
4.1.4 A ir sha ll b e ex ha ust ed from t he t est ro m a t a lo at io
awa from t he sup p ly a ir pa t h a nd o t of t he p la nes of
me sur eme t
mea ns of c ntr ol n t he air flow r a t e A flow ra t e me su n
d v ic e, a st an ar d t est d ct (irst t est inst alatio ) or a t est d ct
w hic w il prov id v va lu s w ithin 5% of t hose o t a in d in a
t est c n u t ed in ac c orda nc w it h 3.3
4.3 In t alla t ion of t he a ir t ermina l devic e
Termin l d v ic es c a n b e div id d into t hr ee broa d c la sses:
Cla ss I Devic es from w hic t he jet is es e t ia lly t hree
dime sio a l;
A ) n z les
B) g les a nd regist ers
Cla ss I Devic es from w hic t he jet flows ra dia lly a lo g a
sur fa e; c ein difuser s
Cla ss I Devic es from w hic t he jet is es e t ia lly tw o
dime sio al; ln ar g les, slots a nd ln ar difuser s
4.3.1 The a ir t er mina l d vic e sha ll b e inst ale (usin t he
met ho r ec om e d d by t he ma uf actur er ) in t he folow in
p sit io w it h t he se o d t est inst alat io (Se fig r e 6.1
4.3.1.1 Cla ss IA d vic es (n z les) sha ll b e mo nte in su h a
p sit io a s to prov id t he ma x imum thr ow w ith a minimum ef
fe t from a dja c ent b u d r i s, for e x amp le a t t he c ent re of o e
of t he sma ller test ro m w a lls
4.3.1.2 Cla ss IB d vic es (g les a d r egist e ) sha ll b e p -
sit io e o t he c ent re ln of o e of t he smaler w a lls of t he t est
ro m w ith t he in er up p er sur fa e of t he ATD 0,2 m from t he
c ein
4.3.1.3 Cla ss I d vic e (difusers) sh l b e mo nte flush w ith
t he mo nt in sur fa e a nd in a p sitio d f in d b y :
a ) difusers of r a dia l pa t t er n su h th t t he c ent r e of t he
t est d ct is n closer to any o e w a ll t ha n ap p rox imat ely
h lf t he w idth of t he t est ro m;
b) difuser s of dir ect io al pa t t ern sha ll b e t hat a s t y p ic a lly
a p p lie a nd inst ale in a cc or da c e w ith t he ma uf actur er ’s
4.3.1.4 Cla ss I d vic es (ln ar s) w he t est ed a s sid wa ll
A TD’s sha ll b e mo nte a s in 4.3.1.2 Slot AT D’s sha ll b e
mo nte a s Cla ss I or I whic hev er is a p p lic a b le A r tificial
sid w a lls sha ll b e emp loy ed w ith A T D’s t h w ould n r ma lly
spa n t he dist a nc b et we n tw o w a lls The minimum le gt h of
t he ATD t est ed sh l b e e ual to or grea t er t ha n I2 m w he
ar tif icial sid w a lls a re emp loy ed
4.3.2 The t est d ct sh l b e n r mal to t he sur f ac in w hic t he
a ir t er mina l d v ic es a re mo nte u les ot herw ise r ec mme -
d d by t he ma uf actur er
4.3.3 The hig est flow ra t e for a n ATD t h ma y b e ut ilze in
a given r oom size sh l b e lmite to t he o e for w hic t he max i-
mum air jet v eloc it y d es n t ex cee d I0 m/s a t a dist anc e of
1,0 m from t he b u da r y wa ll in t he dir ect io u d r
inv es g t io
4.4.1 T es n sh l c mme c afer st ea dy st a t e isoth r ma l
c n itio s have b ee a c hiev ed Su h c n itio s sh l b e sa id
to ex ist w he t e p ra t ur e-me su n prob s p la c ed a re in t he
folow in p sitio s :
a )
in t he sup p ly d ct, u st r ea m of t he air ter min l d v ic e;
b) a t t he c ent re of t he ex haust t er mina l d vic e;
a d in ic at e t emp r a t ur es t ha t d n t difer from ea c h oth r by
mor e t ha n 2 K for a p rio of 5 min p or to a nd a t any t ime
d r i g t he t es
Trang 114.4.2 The flow ra t e sha ll n t vary by mor e t ha f 2% b f or e
a nd d r i g t he t es
4.4.3 Any v eloc it y mea sur eme t s ma de w ithin t he f olow in
dist a nc es from a wa ll tow ar ds w hic t he air is flow in sha ll n t
b e use for r a t in p r poses
su st a nt ia lly difer ent flow r a t es for ea c h size of a ir ter min l
d vic e t est ed
4.5.1 T his t est is to d t er min u d r isoth r ma l c n itio s t he
t hr ow (X l, sp rea d (r) a nd dr op (Z) b y mea surin veloc it ies
w it hin t he a ir st r eam a t v a r io s dist an es awa from t he sup p ly
AT D The a ir v eloc it ies sha ll b e mea sured w it h a n instr ume t a s
sp cif ie in ann x A a d a n ex p lora t ory t ec hniq e sha ll b e use
t o d t ermin t he lo atio of t he air st rea m e v elop e(s) The
meth d A (se 4.5 ) or a lt e a t iv es giv n in a n x C sha ll b e
use
A v ert ic a l p la ne of ma x imum v eloc it y sh uld b e d t er min d
from a plot of t he lo i of p int s in t he disc ha r ge air st rea m a t a
u iform veloc it y w ithin t he ra ng of I0 to I5 m/s (ie isov el
for ATD disc ha rge st r eam a t u iform veloc it y in ra ng of I0 to
I5 m/s) Ty p ic a l o e t atio of v ert ic a l p la nes of ma x imum
v loc it y a re sh w n in fig r es 7A to 7F
4.5.3 V eloc it y mea sur eme t s sh l b e t a ke a t a minimum of
eig t dist an es from t he A TD, b t n t mor e f req e t ly t ha n a t
0,3 m int er v a ls, in t he p la ne of ma x imum veloc it y a s d t er -
min d in 4.5.2 These mea sur eme t s sha ll b egin a t a p int a t
w hic t he hig est v eloc it y is a t lea st 0,5 m/s grea t er t ha t he
t er min l veloc it y u d r c nsid r atio Se eral mea su n p si-
t io s in se u nc e in t he disc ha rge st rea m a t 2 , 7 , 15 , 2 5,
3 0, 6 0, 9 0 mm, et c awa from t he a dja c ent sur f ac or
st r eam c nt r eln a t ea c h dist a nc e o t lin d ab ov sha ll b e
re uir ed u ti t he hig est a ir st r ea m v eloc it y ha s b ee est a b-
lsh d
4.5.4 A t ea c h dist a nc e X from t he ATD for w hic t he v
v loc it y is me sured t he n n-dime sio al r elat io ship of vxlv,
a nd t he c r r esp n in valu of X dA k sha ll b e c a lc ula t ed w it h
t he r esults plot t ed a s a lo a t h ic fu ctio a s sh w n in
fig r e 8 (For a given ATD t he valu A , is su st a nt ia lly c ns-
t ant a d v, t y p ic a lly va ries w it h t he air flow r at e.)
4.5.4.1 In ana ly zin t he p r f or ma c of jet s, fo r major zo es
c a n b e distin uish d The may b e d fin d in ter ms of t he
ma x imum or c nt r eln veloc it y ex is n a t t he cr os -se tio b e-
in c nsid r ed a s folows:
Zo e 1:
A sh r t zo e, ex t en in a bo t fo r dia met e or
w idths from t he sup p ly air ter min l d vic e f a ce (or vn c n-
t r a c t a for o fic disc ha r ge), in w hic t he ma x imum v eloc it y
of t he a ir st r ea m r emains pra c t ic a lly u c ha ng d
dia met er s for r ou d sup p ly air t er mina l d v ic es or for r ec-
t a ng la r sup p ly air t er mina l d v ic es of smal a sp ec t r at io,
over most of w hic ma x imum v eloc it ies vary inversely a s t he
sq a re r oot of t he dist an e from t he sup p ly a ir t er min l
d vic e For rect a ng la r sup p ly air ter min l d vic es of la rge
a sp c t r atio, this zo e is elo ga t ed a nd ex t en s from a bo t
fo r w idt hs to a dist a nc ap p rox imat ely e ua l to t he w idth
mult iple b y fo r t imes t he a sp c t r at io
Zo e 3: A lo g zo e, of major e gin erin imp r t a nc , in
w hic t he ma x imum veloc it y va ries inversely a s t he dist a nc
from t he sup p ly a ir t er mina l d vic e T his zo e is ofe c a lle
t he zo e of fuly est a b lish d t ur bule t flow a nd may b e 2 to
10 diamet er s lo g (or e uiva le t diamet er s of e ual a rea s),
d p n in o t he sha p e a d a re of t he sup p ly a ir t er min l
d vic e, t he init ia l v eloc it y a d t he dime sio s of t he sp a ce
into w hic t he sup p ly a ir t er min l d vic e disc arges
Zo e 4: A ter min l zo e in w hic , in t he c a se of c nfin d
sp a c es, t he ma x imum v eloc it y d c rea ses a t a n inc rea sin
r a t e, or, in t he c a se of la rge sp a c es fr ee from wa ll efe ts,
t he ma x imum v eloc it y d c rea ses ra pidly in a f ew diamet ers
to t he veloc it y ra ng b low 0,2 m/s w hic is usua lly
rega r de a s s l air
4.5.5 The plot sha ll b e dr aw n thr ou h t he t est p int s w it h t he
slop e of t he plot e ua l in a ngle to t he r ef eren e slop e ln s
(zo es 2 a nd 3) in fig r e 8 T his sha ll b e rep ea t ed for a ll t est s in
this pr od ct series For low v v eloc it ies t he zo e 4 slo e sh l
b e dr aw n The slop e ln s sha ll b e dr aw n thr ou h t he t est
p int s; t he int e e tio s of t he zo e slop e ln s sh l b e d t er -
min d b y t he b st p os ible mat ch of t he t est p int s a nd t he
slop e ln The ln for ea c h t est ed ATD sh l b e plot t ed a nd
represe t a t ive of t he pr od ct se es If t he difer en e b et we n a
thr ow int erpolat ed b y t he me ia ln a nd t he ex p erime t a l
throw d es n t excee d f 2 %, t he this c r r elat io c a n b e
use to int erpola t e t he thr ow for a pr od ct se es
4.5.6 The thr ow dist anc e X for a given air flow ra t e may b e
b a se o any a p prop ria t e t er min l v eloc it y vx The v selec t ed
sh l b e r ef er enc ed in t he r ec r de da t a
4.5.7 The r atio of thr ow to sp rea d sha ll b e d t er min d from
t he plot of t he lo i of u iform veloc it y use to est a blsh t he
p la ne of ma x imum v eloc it y T his r at io sh l b e use to c a lc ula t e
t he sprea d a t oth r flow ra t es a nd v va lu s for t he ATD u d r
tes
4.5.8 The dr op sha ll b e d t ermin d a nd q a lifie in t he ma -
n r a s d sc r ib d in 4.5.7
NOT E - In c a ses of n n-symmet r ica l jets, a dit io al mea sur eme t s
sha ll b e ma de in va ry in p la nes to d t er min t he e velop e v eloc it ies
Trang 12flo w rat e cnt rol an
flo w rat e meas ri g
Fig r e 2 - Dir ect me sur eme t of t ota l pres ure pitot t ub lo at io in first t est inst alat io “A”
for sup p ly or “C” for ex ha ust
Trang 13Dime sio s in metres
Measure presure a lo g c ent re ln
rat e measri g d vic e
Trang 14Dime sio s in metres
flo w flo w c c