Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (−2; 1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; −1; 2).
Câu 2 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 4
Câu 3 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 4 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.
Câu 5 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
3a
2a
√
a
√
√ 5a
3 .
Câu 6 Hàm số nào sau đây đồng biến trên R?
C y= √x2+ x + 1 − √x2− x+ 1 D y= x2
Câu 7 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x
A S = 5
2.
Câu 8 Kết quả nào đúng?
A.R sin2xcos x= −cos2x sin x + C B. R sin2xcos x= sin3x
C.R sin2xcos x= −sin3x
Câu 9 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 10 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
3 = z+ 2
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
2
3
√
5.
Trang 2Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A N(1 ; 1 ; 7) B P(4 ; −1 ; 3) C M(0 ; 0 ; 2) D Q(4 ; 4 ; 2).
Câu 13 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −cos 3x
3 . B f (x)= −3 cos 3x C f (x)= cos 3x
3 . D f (x)= 3 cos 3x
Câu 14 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −1
3(2x+ 1)−
4
3(2x+ 1)−
4
3
C 2(2x+ 1)−
1
1
3 ln(2x+ 1)
Câu 15 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 19 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 20 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.
Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 22 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 11
29
29
11
13.
Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Không có số nào B 0 và 1 C Chỉ có số 1 D C.Truehỉ có số 0.
Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= z B z là số thuần ảo C |z|= 4 D z= 1
z.
Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 26 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 27 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n3 = (1; 1; 1) D.→−n4 = (1; 1; −1)
Trang 3Câu 28 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 29 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 30 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 31 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 32 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
A |A| ≥ 1 B |A| < 1 C |A| ≤ 1 D |A| > 1.
Câu 38 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4
!
4;
5 4
!
4;+∞
!
Câu 40 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2
B P= (|z| − 2)2
|z|2− 42 D P =
|z|2− 22
Trang 4Câu 42 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 3
1
2 < |z| < 3
2. D |z| <
1
2.
Câu 43 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 44 Cho hàm số f (x) Biết f (0)= 4 và f′
(x)= 2 sin2
x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 16π − 4
16
Câu 45 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 1 và x = 2 B y= 2 và x = 1 C y= 1 và x = −1 D y= −1 và x = 2
Câu 46 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : x − 2z + 5 = 0 B (P) : y + z − 1 = 0 C (P) : x − 2y + 1 = 0 D (P) : y − z + 2 = 0.
Câu 47 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(2; −6; 4) B M(−2; −6; 4) C M(−2; 6; −4) D M(5; 5; 0).
Câu 49 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (−2; 3; 4) C.→−n = (−2; 3; 1) D.→−n = (2; 3; −4)
Trang 5HẾT