1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (547)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng? A y = x3 − 2x[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 2 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 9 B |→−u |= 3

C |→−u |= √3 D |→−u |= 1

Câu 3 Hàm số nào sau đây không có cực trị?

Câu 4 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 5 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a2

√ 3b2− a2

2 q

b2− √3a2

C VS.ABC =

√ 3a2b

√ 3ab2

12 .

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 7 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 8 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 9 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 2

(3x − 1) ln 2. B y

′ = 6 3x − 1

ln 2

3x − 1

ln 2

(3x − 1) ln 2.

Câu 10 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= 1

2F(2x − 1)+ C B. R f(2x − 1)dx = F(2x − 1) + C

C.R f(2x − 1)dx= 2F(2x − 1) + C D.R f(2x − 1)dx = 2F(x) − 1 + C

Câu 11 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5).

Câu 12 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông

với cạnh huyền bằng 2a Tính thể tích của khối nón

A. π.a3

4π√2.a3

2π.a3

π√2.a3

Trang 2

Câu 13 Tính nguyên hàm cos 3xdx.

A. 1

3sin 3x+ C

Câu 14 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1

B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 15 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 16 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B [22;+∞) C [7

4; 2]S[22;+∞) D (7

4; 2]S[22;+∞)

Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z+ z = 2bi B z · z = a2− b2 C z − z= 2a D |z2|= |z|2

Câu 18 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 19 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = −21009 C (1+ i)2018 = 21009i D (1+ i)2018 = −21009i

Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 21 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √13 B |z1+ z2|= 5 C |z1+ z2|= 1 D |z1+ z2|= √5

Câu 22 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|=

34

√ 34

Câu 23 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 24 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= 6√3 C |w|= 4√5 D |w|= √85

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Rút gọn biểu thức M= 1

logax + 1

loga2x + + 1

logakx ta được:

A M = k(k+ 1)

2logax . B M = k(k+ 1)

3logax . D M= 4k(k+ 1)

logax .

Trang 3

Câu 27 Cho hàm số y= 5x −3x Tính y′

A y′= (x2− 3x)5x 2 −3xln 5 B y′ = (2x − 3)5x 2 −3x

Câu 28 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3

A. 2 ln x+ 3

Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).

Độ dài đường cao AH của tứ diện ABCD là:

Câu 30 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)

Câu 31 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s)

Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?

Câu 32 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng

với lãi suất 3

A 46.538667 đồng B 48.621.980 đồng C 43.091.358 đồng D 45.188.656 đồng.

Câu 33 Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y= x2+ 2x

x −1 là:

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z|

Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 4)2 B P= (|z| − 2)2 C P =

|z|2− 42 D P =

|z|2− 22

Câu 35 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực

Khi đó mệnh đề nào sau đây đúng?

A 2 < |z| < 5

1

2 < |z| < 3

3

2 < |z| < 2 D. 5

2 < |z| < 7

2.

Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

Câu 37 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 2 B |z|= 1

Câu 38 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= 2016 C P = −2016 D P = 1

Câu 39 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1 B |z|= 1

Câu 40 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0

Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 41 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Trang 4

Câu 42 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B. 5

2 < |z| < 4 C 3 < |z| < 5 D. 3

2 < |z| < 3

Câu 43 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A.

1

4ln 2+ 3π

1

5ln 2+ 6π

5 .

Câu 44 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

A 4a3√

3

Câu 45 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = √ 1

x2− 1 ln 4. B y

(x2− 1)log4e. C y

(x2− 1) ln 4. D y

2(x2− 1) ln 4.

Câu 46 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3

√ 15

a3

√ 5

a3

√ 15

Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

30

a√15

3a√6

3a√6

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (3; 14; 16)

Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Trang 5

HẾT

Ngày đăng: 05/04/2023, 08:21

🧩 Sản phẩm bạn có thể quan tâm

w