TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suấ[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 2. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 4. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 5. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 6. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 7. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 8. [3-1122h] Cho hình lăng trụ ABC.A0B0C0có đáy là tam giác đều cạnh a Hình chiếu vuông góc của
A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và BC
là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
24 .
Câu 9. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√ 3
a3√ 3
a3√ 3
12 .
Câu 10. Khối đa diện đều loại {5; 3} có số cạnh
Câu 11. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
14√3
√
√ 3
Câu 12. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
2 .
Trang 2Câu 13. Khối đa diện đều loại {4; 3} có số cạnh
Câu 14. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.
Câu 15. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 16. [1] Đạo hàm của làm số y = log x là
0 = 1
xln 10. C y
0 = 1
0 = ln 10
x .
Câu 17. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 19. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 1; m = 1
C M = e−2
− 2; m= 1 D M = e−2+ 2; m = 1
Câu 20. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A 2a2
√
3√ 3
a3√ 2
a3√ 3
12 .
Câu 21 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Nhị thập diện đều C Bát diện đều D Tứ diện đều.
Câu 22. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2
!
2;+∞
!
2;+∞
!
Câu 23. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 24. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 25 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Câu 26. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x)+ g(x)] = a + b
Trang 3Câu 27. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 28. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 29. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 30. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√ 2
Câu 31. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 32. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 33. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 3
Câu 34. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1079
4913.
Câu 35. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 36. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 2
Câu 37. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = 6a3 C V = 3a3
√ 3
2 . D V = a3
√ 3
2 .
Câu 38. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 39. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m > 1
1
1
1
4.
Trang 4Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3√ 3
a3√ 3
a3
3 .
Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 42. [1] Biết log6 √a= 2 thì log6abằng
Câu 43 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 44. Tìm giới hạn lim2n+ 1
n+ 1
Câu 45. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= − loga2 C log2a= loga2 D log2a= 1
log2a.
Câu 46. Khối đa diện đều loại {3; 5} có số mặt
Câu 47. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 3, 5 triệu đồng.
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. ab
a2+ b2 C. √ ab
2
√
a2+ b2
Câu 49. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 50. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
0 = 1
2x ln x. D y
0 = 2x ln x
Câu 51. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 52. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị lớn nhất trên K B f (x) liên tục trên K.
Câu 53. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 1 C T = e + 3 D T = 4 + 2
e.
Trang 5Câu 54. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 55 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
xαdx= xα+1
α + 1+ C, C là hằng số.
C.
Z
dx = x + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 56. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 57. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 58. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 59. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a
√ 2
√
√ 2
Câu 60. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 61. Khối lập phương thuộc loại
Câu 62. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 63. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3√ 3
a3
3 .
Câu 64. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; −3; 3) B A0(−3; 3; 1) C A0(−3; −3; −3) D A0(−3; 3; 3)
Câu 66. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 9
3
2.
Câu 67. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Trang 6Câu 68 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 69. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
1
2
Câu 70. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.
Câu 71. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
a3√ 3
4a3√ 3
8a3√ 3
3 .
Câu 72. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 13
Câu 73. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 74. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 75. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 76. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 77. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 78. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
3√
3√ 6
a3√5
3 .
Câu 79. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 5
a3√ 5
a3√ 3
12 .
Câu 81. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Trang 7Câu 82. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
√ 3
2 . D P= −1+ i
√ 3
Câu 83. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 84. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 85. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 86. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 87. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
5a3√ 3
a3√ 3
4a3√ 3
3 .
Câu 88. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2 và 2
√
√
√
2 và 3
Câu 89. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 90. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = [2; 1] B. D = R \ {1; 2} C. D = (−2; 1) D. D = R
Câu 91. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 92. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều đúng.
Câu 93. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey
− 1
Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√3
a3√3
3√ 3
Trang 8Câu 95. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 2
Câu 96. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 97. Tứ diện đều thuộc loại
Câu 98. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 99. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
12 .
Câu 100. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x +1
x. C y= x4− 2x+ 1 D y= x −2
2x+ 1.
Câu 101. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 102. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 103. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 104. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2
− 4M)2019
Câu 105. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 106. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 107. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 108. Nhị thập diện đều (20 mặt đều) thuộc loại
Trang 9Câu 109. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 110. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.
Câu 111. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 112. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 7
√
√
√ 3
Câu 113. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 114. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối 20 mặt đều D Khối bát diện đều.
Câu 115. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 116. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 117. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 118. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 119. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 120. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 121. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 122. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
Trang 10A Câu (II) sai B Không có câu nào
sai
C Câu (III) sai D Câu (I) sai.
Câu 123. Tính limcos n+ sin n
n2+ 1
Câu 124. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Câu 125. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 126. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 127. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 128. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 129. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 130. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
HẾT