TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hai hàm y = f (x), y = g(x) có đạo hàm trên R Phát biể[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=
Z g(x)dx thì f (x) , g(x), ∀x ∈ R
B Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
D Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 2. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 3. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 4. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Hai hình chóp tam giác.
Câu 5. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
2 .
Câu 6. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Câu 7. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 8 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α
B aα+β= aα.aβ
C aαβ = (aα
)β D. a
α
aβ = aα
Câu 9. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 10. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 11 Phát biểu nào sau đây là sai?
nk = 0
C lim1
Trang 2Câu 12. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 13. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1079
23
1728
1637
4913.
Câu 14. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 15. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
1
sin n
n .
Câu 16. Khối đa diện đều loại {4; 3} có số cạnh
Câu 17. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√ 2
2 .
Câu 19. Điểm cực đại của đồ thị hàm số y = 2x3
− 3x2− 2 là
Câu 20. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = −ey
− 1 D xy0 = ey
− 1
Câu 21. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 22. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2, phần ảo là 1 −
√
3 B Phần thực là √2 − 1, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là −
√ 3
Câu 23. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
! B. " 2
5;+∞
!
5
#
3
#
Câu 24. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 25. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 26. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Trang 3Câu 27. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
Câu 28. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 29. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 30. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3√ 3
a3√ 3
3√ 3
Câu 31. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 32. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
3.
Câu 33. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 34. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−∞; 0) và (1; +∞) B (−1; 0) C (−∞; −1) và (0; +∞) D (0; 1).
Câu 35. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 36. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 37. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 38. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều đúng D Cả hai đều sai.
Câu 39. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 40. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Trang 4Câu 41. Bát diện đều thuộc loại
Câu 42 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 43. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 44. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 45. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 46. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = (−2; 1) B. D = R C. D = [2; 1] D. D = R \ {1; 2}
Câu 47. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)20
10
50.(3)40
20
50.(3)30
40
50.(3)10
450
Câu 48. Biểu thức nào sau đây không có nghĩa
√
√ 2)0 D 0−1
Câu 49. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 50. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a
√ 2
√
Câu 51. Khối đa diện đều loại {3; 4} có số cạnh
Câu 52. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√
√ 13
13 .
Câu 53. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√ 10
Câu 54. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Trang 5Câu 55. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
2
Câu 56. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 5
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 57. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 0 C M = e, m = 1 D M = 1
e, m = 0
Câu 58. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
2e
π
√ 2
2 e
π
4
Câu 60. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
Câu 61. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3
√ 5
a3
√ 15
a3
√ 15
5 .
Câu 62. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 63. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 9
1
2
1
10.
Câu 64. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 65. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 66. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 67. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
log2a. C log2a= − loga2 D log2a= 1
loga2.
Câu 68. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Trang 6Câu 69. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
5
9
23
100.
Câu 70. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 71. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 72. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng −∞;1
3
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số đồng biến trên khoảng 1
3; 1
! D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 73. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2
− 2; m= 1 B M = e−2+ 1; m = 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 74. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 75. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 76. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 77. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối 20 mặt đều D Khối bát diện đều.
Câu 78. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 79. Khối đa diện đều loại {3; 4} có số mặt
Câu 80. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 81. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Trang 7Câu 82. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 83. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3√6
3√
3√ 5
3 .
Câu 84. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 85. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 86. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 87. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 88. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (3; 4; −4) B ~u= (2; 1; 6) C ~u= (1; 0; 2) D ~u= (2; 2; −1)
Câu 89. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 90. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 91. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 92. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 93. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 94. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 95. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 96. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Không thay đổi C Tăng lên (n − 1) lần D Tăng lên n lần.
Câu 97 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
C.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số D.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Trang 8Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 99. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 100. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó
Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?
Câu 101. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 102. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 103. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
a√57
19 .
Câu 104 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 105. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√3 B m= ±3 C m= ±√2 D m= ±1
Câu 106. Tìm giới hạn lim2n+ 1
n+ 1
Câu 107. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
14√3
3 .
Câu 108. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ 2 sin 2x C −1+ sin x cos x D 1 − sin 2x.
Câu 109. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A −1
1
1
3.
Câu 110. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 111. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = ln x − 1 C y0 = x + ln x D y0 = 1 − ln x
Trang 9Câu 112. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.
Câu 113. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 114. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 116. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 12)3− 1 triệu.
C m = 100.(1, 01)3
(1, 01)3− 1 triệu.
Câu 117. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
B.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= 1 + 7t
y= 1 + t
z= 1 + 5t
Câu 118. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
√ 3
a
a
2.
Câu 119. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 120. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Trang 10Câu 121. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 5
a3
√ 5
a3
√ 3
12 .
Câu 123. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 124. Khối đa diện đều loại {3; 3} có số cạnh
Câu 125 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 126. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.
Câu 127. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 128. Khối đa diện đều loại {3; 5} có số mặt
Câu 129. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
2 .
Câu 130. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
HẾT