1. Trang chủ
  2. » Tất cả

12 ứng dụng của tích phân xác định

34 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề 12 Ứng Dụng Của Tích Phân Xác Định
Thể loại bài báo
Định dạng
Số trang 34
Dung lượng 375,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TÍCH PHAÂN BAÁT ÑÒNH ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN XÁC ĐỊNH Bài toán diện tích D D a  x  b, y nằm giữa 0 và f(x) a b Bài toán diện tích D a  x  b, y nằm giữa f1(x) và f2(x) a b Bài toán diện tíc[.]

Trang 1

ỨNG DỤNG HÌNH HỌC CỦA

TÍCH PHÂN XÁC ĐỊNH

Trang 2

Bài toán diện tích

Trang 3

Bài toán diện tích

Trang 4

Bài toán diện tích

Trang 5

Bài toán diện tích

Trang 6

Lưu ý

Có thể vẽ hình các đường cong đơn giản hoặc tìm hoành độ(tung độ giao điểm) để xác định cận tích phân

•Tính hoành độ giao điểm  tích phân tính

theo biến x(ngược lại là tính theo y)

Trang 8

Ví dụ

2 0

16 (2 )

15

   

Trang 9

Ví dụ

Tính diện tích miền phẳng giới hạn bởi:

2, 0, 2

y x y   x y  

Trang 10

Tính diện tích miền phẳng giới hạn bởi:

Trang 11

Ví dụ

24

y 

2 2 24

Trang 12

Bài toán thể tích

D: a  x  b, y nằm giữa 0 và f(x)

Quay D xung quanh Ox

Trang 13

Vật thể tạo ra có dạng tròn xoay.

Trang 20

Lưu ý về tính đối xứng

Nếu miên D đối xứng qua Ox, D1 là phần phía

trên Ox của D

1 1

Trang 21

Ví dụ

D : x  0, y  2 – x2, y  x

Tính thể tích khi D quay quanh Ox, oy

1 20

Trang 23

2 1

y   x

Tính thể tích khi D quay quanh Ox, Oy

1 20

2  1 x dx

  

1 20

2 1

y

V    xx dx

Trang 25

Bài toán diện tích, thể tích với

đường cong tham số

( ) t ( ) ( )

t

S D   y t x t dt

D giới hạn bởi trục hoành, 2 đường thẳng x=a,

x=b và đường cong tham số

Trang 26

6 (sin t sin ) t dt

    3 16 

Trang 27

2   

     

x y dx V

3 3

cos , sin ,0

xt yt   x  và trục hoành

D:

Tính thể tích tạo ra khi D quay quanh Ox, Oy

Nhận xét: D đối xứng qua Oy (thay x bởi  - x )

0 2 2

2   ( ) ( ) 

  y t x t dt

Trang 28

1 0

2

Vy    x y dx

0 6 22

2 sin 3cos ( sin )

x

V    t t  t dt

0 3 3 22

2   cos sin 3cos ( sin ) t t t t dt

7 9

2 0

6 (sin t sin ) t dt

  

Trang 29

Độ dài đường cong phẳng Diện tích mặt tròn xoay

 2

1 ( )

b a

Cho đường cong C: y= f(x), a  x  b

Độ dài đường cong C:

Khi C quay quanh Ox tạo thành diện tích :

Trang 30

Ví dụ

1 ( 12),0 12 6

x

  

Cho đường cong C:

Tính độ dài đường cong và diện tích mặt

tạo ra khi C quay quanh Ox

Trang 31

S    yy dx

12 0

4 ( 12)

Trang 32

Cho đường cong C:

Tính diện tích mặt tròn xoay tạo ra khi

C quay quanh Oy

Trang 33

ln 2 20

2 y 1 y

y

S    e  e dy

2 21

Trang 34

Bài toán độ dài cung và diện tích mặt tròn xoay với

đường cong tham số

   

2 1

t t

Cho đường cong C: x = x(t), y = y(t), t1 t  t2

   

2 1

Ngày đăng: 03/04/2023, 23:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm