1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg (971)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,98 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là A 5 B[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 2. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t) = −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 3 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 4. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 5. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 6. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

3

√ 3

2 .

Câu 7. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 8. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.

C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.

Câu 9. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 10. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= 10 C f0(0)= ln 10 D f0(0)= 1

Câu 11. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 12. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 13. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Trang 2

Câu 14. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 15. Khối đa diện đều loại {3; 3} có số cạnh

Câu 16. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 17. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 18. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 19. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 20. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 21. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

√ 2

Câu 22. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3√ 3

3

3 .

Câu 23. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 24. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 25. Khối đa diện đều loại {3; 3} có số mặt

Câu 26. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 27. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 28. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 29. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 18

11 − 29

21 .

Trang 3

Câu 30. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 31. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2, phần ảo là −

√ 3

C Phần thực là √2 − 1, phần ảo là

3 D Phần thực là √2 − 1, phần ảo là −

√ 3

Câu 32. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 ≤ m ≤ −1 D −2 < m < −1.

Câu 33. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 34. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 35. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 36. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 37. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 38. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 39. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1 2e3

Câu 40. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

Câu 41. Dãy số nào sau đây có giới hạn khác 0?

A. 1

1

n+ 1

sin n

n .

Câu 42. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (2; 2; −1) C ~u= (1; 0; 2) D ~u= (3; 4; −4)

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√2

a3√3

6 .

Trang 4

Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 45. Biểu thức nào sau đây không có nghĩa

Câu 46. Khối đa diện đều loại {3; 4} có số mặt

Câu 47. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 48. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 49. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 3

Câu 50. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 51. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 52 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

Câu 53. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 54. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 55. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

9

23

13

100.

Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

a3

4a3√3

3 .

Trang 5

Câu 57. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

12 .

Câu 58. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 59. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 60. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 61. Hàm số f có nguyên hàm trên K nếu

Câu 62. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 63. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 64. Tính lim

x→2

x+ 2

x bằng?

Câu 65. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 66. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 67. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

B. " 2

5;+∞

!

"

−2

3;+∞

!

5

#

Câu 68. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2017

2016

2017.

Trang 6

Câu 69. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là −1.

Câu 70. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 71. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 72. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 73. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = −2

3

!n C un = n3− 3n

n+ 1 . D un = 6

5

!n

Câu 74. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 75. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 76. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 77. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 78. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 79. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 80. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 81. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Trang 7

Câu 82. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 83. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 84. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Câu 85. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

10

50.(3)40

20

50.(3)20

40

50.(3)10

20

50.(3)30

450

Câu 86. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

Câu 87. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 88 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z k f(x)dx= kZ f(x)dx, k là hằng số

Câu 89. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1728

23

1079

1637

4913.

Câu 90. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

3√

3√ 6

a3√ 6

3 .

Câu 91. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Năm tứ diện đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 92. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. abc

b2+ c2

a2+ b2+ c2 C. c

a2+ b2

a2+ b2+ c2 D. a

b2+ c2

a2+ b2+ c2

Trang 8

Câu 93. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

Câu 94. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 18 lần D Tăng gấp 27 lần.

Câu 95. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

3

3 .

Câu 97. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 98. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

2S h. D V = 1

3S h.

Câu 99. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A −1

1

1

e2

Câu 100. Bát diện đều thuộc loại

Câu 101. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 102. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 103. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Câu 104. [1] Đạo hàm của làm số y = log x là

A y0 = 1

0 = 1

xln 10. C.

1

0 = ln 10

x .

Câu 105. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 106. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; 0) và (1; +∞) B (0; 1) C (−∞; −1) và (0; +∞) D (−1; 0).

Câu 107. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 108. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3√2

a3√6

48 .

Trang 9

Câu 109. Khối đa diện đều loại {3; 5} có số mặt

Câu 110. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Câu 111. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

2 . C V = πa3

√ 3

3 . D V = πa3

√ 6

6 .

Câu 112. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

C Cả ba câu trên đều sai.

D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Câu 113. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 114. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 115. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 116. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Trục ảo.

B Đường phân giác góc phần tư thứ nhất.

C Trục thực.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Câu 117. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 118. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2

− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e−2+ 1; m = 1

C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2

Câu 119. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 120. Hàm số y= x +1

x có giá trị cực đại là

Câu 121. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 3, 5 triệu đồng.

Câu 122. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Trang 10

Câu 123. Khối đa diện đều loại {5; 3} có số mặt

Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 125. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 126. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 127. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 128. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 129. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 130 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

HẾT

Ngày đăng: 03/04/2023, 14:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN