TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hai hàm y = f (x), y = g(x) có đạo hàm trên R Phát biể[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
C Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 2. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 3. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
C. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
Câu 4 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. B.
Z 0dx = C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 5. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
5
#
Câu 6. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 1 C M = e, m = 0 D M = 1
e, m = 0
Câu 7. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
2 .
Câu 8. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 9. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 10. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√ 2
√ 3
Trang 2Câu 11. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
9
Câu 12. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
2.
Câu 13. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 14. Khối chóp ngũ giác có số cạnh là
Câu 15. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 16. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 17. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 2
a3√2
12 .
Câu 19. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 20. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) trên khoảng (a; b)
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 21. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
5.
Câu 22. Tính lim 5
n+ 3
Câu 23. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 24. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 3Câu 25. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 26. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 27. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 28. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 29. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 30. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 31. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1
e2
Câu 33. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 34. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 35. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
24 .
Câu 36. Tính lim
x→1
x3− 1
x −1
Câu 37. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
Trang 4(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
sai
Câu 38. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 39. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 40. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 41 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
Câu 42. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2 và 2
√
√
√
2 và 3 D 2 và 3.
Câu 43. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A. 1
1
Câu 44. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 45. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 46. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị nhỏ nhất trên K D f (x) có giá trị lớn nhất trên K.
Câu 47. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 48. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 2a
3√
6
4a3√ 6
3√
3√ 6
3 .
Câu 49. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 50. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Trang 5Câu 51. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 52. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 53. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 54. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h.
Câu 55. Tìm giới hạn lim2n+ 1
n+ 1
Câu 56. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 57. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 58. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 59. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 60. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a
√ 2
a
a
3.
Câu 61. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 62 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B.
Z
f(x)dx
!0
= f (x)
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 63. Bát diện đều thuộc loại
Câu 64. Khối lập phương thuộc loại
Câu 65. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Trang 6Câu 66. [2] Tổng các nghiệm của phương trình 2x +2x = 82−x
là
Câu 67. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a√2
√
√ 2
Câu 68. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 69. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 70. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 71. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 72. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 73. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 74. [1] Biết log6 √a= 2 thì log6abằng
Câu 75. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3
√ 15
a3
√ 5
25 .
Câu 76. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 77. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= − loga2 C log2a= 1
loga2. D log2a= loga2
Câu 78. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 79 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim √1
n = 0
C lim 1
nk = 0 với k > 1 D lim qn= 1 với |q| > 1
Câu 80. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Trang 7Câu 81. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2016
2017.
Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 83. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 84. Dãy số nào có giới hạn bằng 0?
A un= n2− 4n B un = −2
3
!n C un = 6
5
!n D un = n3− 3n
n+ 1 .
Câu 85. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3, m = 4 B m= 4 C −3 ≤ m ≤ 4 D m= −3
Câu 86. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1+ 2e 4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 87. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng 2n.
Câu 88. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 89 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 90. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 92. Khối đa diện đều loại {3; 4} có số mặt
Câu 93. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 94. [1] Đạo hàm của làm số y = log x là
0 = ln 10
0 = 1
xln 10. D y
0 = 1
x.
Trang 8Câu 95. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 2 log 2x
x3
Câu 96. Khối đa diện đều loại {5; 3} có số mặt
Câu 97. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
2.
Câu 98. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
2a√57
a√57
19 .
Câu 99. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 100. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√ 3
a3√ 3
3√ 3
Câu 101. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 102. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2;+∞
!
2
!
2;+∞
!
Câu 103. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 104. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√
Câu 106. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
6 .
Câu 107. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Trang 9Câu 108. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 70, 128 triệu đồng.
Câu 109. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 110. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 111. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.
Câu 112 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 113. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 114 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 115. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y − 1)2+ (z − 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
Câu 116. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
3 .
Câu 117. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√3
3√ 3
9 .
Trang 10Câu 118. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 119. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
Câu 120 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Nhị thập diện đều C Bát diện đều D Tứ diện đều.
Câu 121. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 2
a3√3
a3√3
12 .
Câu 122. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 123. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 124. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 125. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Câu 126. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Câu 127. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 128. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 129. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 130. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
HẾT