1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 9 (257)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 9 (257)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Gọi M,m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= 1

e, m = 0 C M = e, m = 1 D M = e, m = 1

e.

Câu 2. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a

√ 57

a

√ 57

√ 57

Câu 3. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 4. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e 4e+ 2.

Câu 5. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 6. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A 3 − 4

√ 2

Câu 7. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 8. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 9. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√3

a3√3

a3√3

4 .

Câu 10. [1] Biết log6 √a= 2 thì log6abằng

Câu 11. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là

2 − 1, phần ảo là −

√ 3

C Phần thực là 1 −

2, phần ảo là −

2, phần ảo là 1 −

√ 3

Câu 12. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 13. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Trang 2

Câu 14. [2] Tổng các nghiệm của phương trình 2x +2x = 82−x

Câu 15. Tính lim

x→2

x+ 2

x bằng?

Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 3) B A0(−3; −3; 3) C A0(−3; −3; −3) D A0(−3; 3; 1)

Câu 17. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 18. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

5

# C. " 2

5;+∞

!

"

−2

3;+∞

!

Câu 19. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 2

Câu 20. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 21. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 22. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 23. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 24. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 25. Tính lim

x→1

x3− 1

x −1

Câu 26. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 27. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 28. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 D xy0 = ey+ 1

Trang 3

Câu 29. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = 3S h D V = S h

Câu 30. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (3; 4; −4) C ~u= (2; 1; 6) D ~u= (2; 2; −1)

Câu 31. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi.

Câu 32. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 33. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 34. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 35. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 36. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 37. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 38. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 39 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

Câu 40. Khối đa diện đều loại {3; 4} có số cạnh

Câu 41. Tính lim

x→ +∞

x −2

x+ 3

Trang 4

Câu 42. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

A. 3

Câu 43. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 45. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

Câu 46. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x − 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

Câu 48. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 49. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 50. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 51. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Trang 5

Câu 52. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 53. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 2

Câu 54. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 68

Câu 55. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số mặt của khối chóp bằng 2n+1.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số cạnh của khối chóp bằng 2n.

Câu 56. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 57. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 58. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 59. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 60. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.

Câu 61. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 62. Thể tích của khối lập phương có cạnh bằng a

√ 2

A. 2a

3√

2

2 D V = 2a3

Câu 63. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 64. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

6.

Câu 65. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Trang 6

Các mệnh đề đúng là

Câu 66. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 67. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3

− mx2+ 3x + 4 đồng biến trên R

Câu 69. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = 1 − ln x C y0 = 1 + ln x D y0 = ln x − 1

Câu 70. Khối đa diện đều loại {5; 3} có số mặt

Câu 71. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 72. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 73. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.

Câu 74. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 75. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 4 đỉnh, 6 cạnh, 4 mặt.

Câu 76. Biểu thức nào sau đây không có nghĩa

Câu 77. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

1

2

Câu 78 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ B aαbα = (ab)α C. a

α

aβ = aα D aαβ = (aα

Câu 79. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 80. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Trang 7

Câu 81. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = a3

√ 3

2 . C V = 6a3 D V = 3a3

√ 3

2 .

Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

2e.

Câu 83. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R \ {0} C. D = R D. D = R \ {1}

Câu 84. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

2a

a

a

3.

Câu 85. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.

Câu 86. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 6

a3

√ 2

a3

√ 3

24 .

Câu 87. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 88. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2

e2

Câu 89. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 1

3

√ 3

2 .

Câu 90. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R \ {1} C. D = R D. D = (−∞; 1)

Câu 91. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

2a3√6

a3√6

3√ 6

Câu 92. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 93. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Trang 8

Câu 94. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x

lần lượt là

A 2 và 2

2 và 3 D 2 và 3.

Câu 95. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 96. [1] Giá trị của biểu thức 9log3 12bằng

Câu 97. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 98. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

2x

Câu 99. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 100. Khối lập phương thuộc loại

Câu 101. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 102. [4] Xét hàm số f (t) = 9t

9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S

Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm

Ađến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 104. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 105. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 106. Khối đa diện đều loại {4; 3} có số mặt

Câu 107 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 108. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Trang 9

Câu 109. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 110. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 5

a3√ 5

a3√ 5

6 .

Câu 112. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 113. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 114. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 115. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

B Hai khối chóp tứ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 116. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 117. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 118. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 119. Khối đa diện đều loại {3; 3} có số mặt

Câu 120. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 121 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

dx = x + C, C là hằng số B.

Z

xαdx= α + 1xα+1 + C, C là hằng số

C.

Z

Z 1

xdx= ln |x| + C, C là hằng số

Câu 122. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

Câu 123. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.

Câu 124. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Trang 10

Câu 125. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 126. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = R C. D = R \ {1; 2} D. D = [2; 1]

Câu 127. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 128. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

Câu 129. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 2

11 − 3

Câu 130. Khối đa diện đều loại {3; 3} có số đỉnh

HẾT

Ngày đăng: 03/04/2023, 07:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN