TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đâ[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 3. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A= a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 3
Câu 4. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Câu 5. Khối chóp ngũ giác có số cạnh là
Câu 6. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1
1
e2
Câu 7. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 8. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 9. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 10. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016 B T = 2016
2017. C T = 1008 D T = 2017
Câu 11. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 12. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 13. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3
4a3√3
2a3√3
2a3
3 .
Câu 14. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Trang 2Câu 15. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 16. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 17. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√ 2
Câu 18. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
3
4.
Câu 19. Tính lim n −1
n2+ 2
Câu 20. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 21. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e−2+ 1; m = 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 22. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 23. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 24. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
√ 2
2 e
π
√ 3
2 e
π
2e
π
3
Câu 25. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 6
a
√ 3
2 .
Câu 26. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
3.
Câu 27. Khối đa diện đều loại {3; 3} có số mặt
Câu 28. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 29. Khối đa diện đều loại {4; 3} có số cạnh
Trang 3Câu 30. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 31. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 32. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (−∞; 0) và (1; +∞) C (−∞; −1) và (0; +∞) D (0; 1).
Câu 33. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√
Câu 34. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.
Câu 35 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D Cả ba đáp án trên.
Câu 36. Tính lim 5
n+ 3
Câu 37. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 39. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 40. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 41. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 42. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
3
!n
e
!n
3
!n
Câu 43 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Trang 4D. f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 44. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 45. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 46. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
a
2a
3 .
Câu 47. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 2
4 .
Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 50. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 51. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 52. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
3.
Câu 53. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều sai.
Câu 54 Phát biểu nào sau đây là sai?
C lim 1
n = 0
Trang 5Câu 55 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 56. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)30
20
50.(3)20
10
50.(3)40
40
50.(3)10
450
Câu 57. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 58. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2− 3n
n2 D un = n2+ n + 1
(n+ 1)2
Câu 59. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
Câu 60. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 61. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
2018.
Câu 62. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 63. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
2x ln x. B y
0 = 1
0 = 2x ln x D y0 = 2x ln 2
Câu 64. [1] Giá trị của biểu thức 9log3 12bằng
Câu 65. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 66. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 67. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 68. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A 2
√
√
√
√ 13
13 .
Câu 69. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Trang 6Câu 70. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 71. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√5
a3√5
a3√3
12 .
Câu 73. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 74. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 75. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 76. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 77. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
2a3√ 3
4a3√ 3
5a3√ 3
3 .
Câu 78. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 3
3√
3√ 3
3 .
Câu 79 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.
Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
4a3√ 3
8a3√ 3
8a3√ 3
3 .
Câu 81. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
1
e3
Trang 7Câu 83. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 84. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 85. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 86. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 87. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
12.
Câu 88. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 89. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 90. Khối đa diện đều loại {3; 5} có số mặt
Câu 91. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 92. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√
Câu 93. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 94. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√58
a√38
3a√38
29 .
Trang 8Câu 95. Tìm giới hạn lim2n+ 1
n+ 1
Câu 96. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 97 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α
B aα+β= aα.aβ
α
aβ = aα D aαβ = (aα
)β
Câu 98. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 99. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
Câu 100. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 101. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.
Câu 102. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 103. Khối đa diện đều loại {5; 3} có số cạnh
Câu 104. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 105. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 106. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 107. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m > 1
1
1
1
4.
Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Trang 9Câu 109. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
2.
Câu 110. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 111. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 112. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 113. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 114. Hàm số y= x +1
x có giá trị cực đại là
Câu 115. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
8a
a
2a
9 .
Câu 116. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 117. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 118. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√2
a3√6
a3√6
36 .
Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 120. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.
Câu 121. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 122. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 123. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
23
9
5
16.
Câu 124. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Trang 10Câu 125. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 126 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 127. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 128. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 129. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= 1
ln 10. C f
0 (0)= ln 10 D f0(0)= 1
Câu 130. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
HẾT