1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 6 (79)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 6 (79)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 153,03 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suấ[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 2 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α

α

aβ = aα C aαβ = (aα

D aα+β = aα.aβ

Câu 3. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 4. Tứ diện đều thuộc loại

Câu 5. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 6. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 7. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 8 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

Câu 9. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 10. Tính lim

x→2

x+ 2

x bằng?

Câu 11 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1

Câu 12. Khối đa diện đều loại {4; 3} có số cạnh

Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

2√a2+ b2 D. √ 1

a2+ b2

Trang 2

Câu 14. [2] Tập xác định của hàm số y= (x − 1) là

A. D = (−∞; 1) B. D = R \ {1} C. D = R D. D = (1; +∞)

Câu 15. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3√

3 D V = a3

√ 3

2 .

Câu 16. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 17. [1] Tính lim1 − 2n

3n+ 1 bằng?

1

2

3.

Câu 18. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

4035

2018.

Câu 19. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Câu 20. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Năm tứ diện đều.

Câu 21. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 22. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2

− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 23. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}

Câu 24. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 25. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 26. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 27. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 28. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

2.

Trang 3

Câu 29. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 9

3

2.

Câu 30. Dãy số nào có giới hạn bằng 0?

A un= 6

5

!n

B un = −2

3

!n C un = n2− 4n D un = n3− 3n

n+ 1 .

Câu 31. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 32. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3

có tất cả bao nhiêu nghiệm?

Câu 33. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 34. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 35. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 36. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 10

Câu 37. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

√ 3

Câu 38. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 39. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! C. " 5

2; 3

!

Câu 40. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 41. Tính lim

x→3

x2− 9

x −3

Câu 42. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

5

#

"

−2

3;+∞

! C. " 2

5;+∞

!

3

#

Câu 43. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 44. Khối lập phương thuộc loại

Trang 4

Câu 45. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= − loga2 D log2a= loga2

Câu 46. Hàm số f có nguyên hàm trên K nếu

Câu 47. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 48. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 49. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 2

5n − 3n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 3n

n2

Câu 50. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 6 lần B Tăng gấp đôi C Tăng gấp 8 lần D Tăng gấp 4 lần.

Câu 51. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 52. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 53. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a

√ 6

3 .

Câu 54. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = e, m = 1

e. D M = 1

e, m = 0

Câu 55. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

Câu 56. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (1; 0; 2) D ~u= (2; 1; 6)

Câu 57. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 58. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 59. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Trang 5

Câu 60. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

3S h. D V = 1

2S h.

Câu 61. Khối đa diện đều loại {5; 3} có số cạnh

Câu 62. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 63. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 D m ≤ 0.

Câu 64. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 65. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 66. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 67. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2

e3

Câu 68. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 69. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 70. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 71 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Trang 6

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 2

a3√ 3

2 .

Câu 73. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 74. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 75. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 76. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

5a

a

2a

9 .

Câu 77. Tìm giới hạn lim2n+ 1

n+ 1

Câu 78. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

27.

Câu 79. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là −1.

C Phần thực là 4, phần ảo là 1 D Phần thực là −1, phần ảo là −4.

Câu 80. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 81. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 82. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 83. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 84. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Trang 7

Câu 85. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 86. Tính giới hạn lim2n+ 1

3n+ 2

3

1

2.

Câu 87. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

3√ 3

a3

√ 3

6 .

Câu 88. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 89. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 90. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



A (−∞; 0] ∪ (1;+∞) B [0;+∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞).

Câu 91. Hàm số y= x + 1

x có giá trị cực đại là

Câu 92 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 93. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B 1 − sin 2x C −1+ sin x cos x D −1+ 2 sin 2x

Câu 94 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 95. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1637

1079

1728

23

68.

Câu 96. Tính lim 5

n+ 3

Câu 97. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√6

a√3

2 .

Trang 8

Câu 98. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞;1

2

!

2;+∞

!

2;+∞

!

2

!

Câu 99. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 100. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 101. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 102. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

9

5

23

100.

Câu 103. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 104. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 105. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

14√3

3 .

Câu 106. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

3√

3√ 5

a3

√ 15

3 .

Câu 108. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 109. Tính lim

x→1

x3− 1

x −1

Câu 110. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 111. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

a√3

a

2.

Câu 112. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Trang 9

Câu 113. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1.

√ 3

1

2.

Câu 114. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 115. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 116. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 117. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 118. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 119. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 120. Biểu thức nào sau đây không có nghĩa

Câu 121 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Bát diện đều B Tứ diện đều C Thập nhị diện đều D Nhị thập diện đều.

Câu 122. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

a√3

a√3

3 .

Câu 123. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 1008 C T = 2017 D T = 2016

2017.

Câu 124. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 120.(1, 12)3

(1, 12)3− 1 triệu.

C m = 100.(1, 01)3

3 triệu.

Trang 10

Câu 125. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 126. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

sin n

1

n.

Câu 127 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= kZ f(x)dx, k là hằng số B.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z f(x)dx

!0

= f (x)

Câu 128. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√ 3

12 .

Câu 129. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên sai D Cả hai câu trên đúng.

Câu 130. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

HẾT

Ngày đăng: 02/04/2023, 20:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w