1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 6 (360)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 6 (360)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Đường phân giác góc phần tư thứ nhất.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Trục ảo.

D Trục thực.

Câu 2. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 3. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logaxtrong đó a= √3 − 2 B y = logπ

4 x

2x

Câu 4. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 5. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tam giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 6. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 7. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 8. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

√ 3

Câu 9. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1

0 = 1

2x ln x.

Câu 10. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 11. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Trang 2

Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3

√ 2

a3√3

4 .

Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 14. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là

Câu 15. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 16. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 17. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A 2a

√ 2

√ 2

2 .

Câu 18. Khối đa diện đều loại {3; 3} có số cạnh

Câu 19. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 20. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 21. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 1

2

1

9

10.

Câu 22. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tam giác.

C Hai hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 23. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2

√ 2

a2

√ 7

a2

√ 5

16 .

Câu 24. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 4 ln 2x

2x3ln 10 .

Trang 3

Câu 25. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

2 . C V = πa3

√ 6

6 . D V = πa3

√ 3

3 .

Câu 26. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3

− 2x2+ 3x − 1

Câu 27. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 5

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 28. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3√ 3

a3√3

a3

3 .

Câu 30. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A − 1

1

e.

Câu 31. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 32. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C f (x) có giới hạn hữu hạn khi x → a D lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 33. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là −1 B Phần thực là −1, phần ảo là −4.

C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.

Câu 34. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 35. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 5

a3√ 5

a3√ 5

6 .

Câu 37. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Trang 4

Câu 38. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 40. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 41. [1] Đạo hàm của làm số y = log x là

A y0 = ln 10

1

0 = 1

0 = 1

xln 10.

Câu 42. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 43. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2

− 2; m= 1 B M = e−2+ 2; m = 1

C M = e−2+ 1; m = 1 D M = e2− 2; m = e−2+ 2

Câu 44. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 45. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 46. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 47. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = 4 B m= −3 C −3 ≤ m ≤ 4 D m= −3, m = 4

Câu 48. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Cả hai đều đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 49. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 34

Trang 5

Câu 50. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 51. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 52. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 53. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 54. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

2017

4035

2018.

Câu 55. Tính lim n −1

n2+ 2

Câu 56. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

e

!n

3

!n

3

!n

Câu 57. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C [1;+∞) D (−∞; 1].

Câu 58. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

2e3

Câu 59. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 60. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 61. Thể tích của khối lập phương có cạnh bằng a√2

A 2a3

3√ 2

2 D V = 2a3

Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 2

a3√3

3√ 3

Câu 63. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

20

50.(3)30

10

50.(3)40

40

50.(3)10

20

50.(3)20

450

Trang 6

Câu 64. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 65. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= 1

e, m = 0 C M = e, m = 1 D M = e, m = 0

Câu 66. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

√ 6

Câu 67. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 68. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 69. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

3.

Câu 70. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Tăng lên (n − 1) lần C Không thay đổi D Giảm đi n lần.

Câu 71. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số cạnh của khối chóp bằng 2n.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 72. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

a2+ b2 C. √ 1

2

a2+ b2

Câu 73. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±1 C m= ±√3 D m= ±3

Câu 74. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 75. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 76. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

!

5

#

3

# D. " 2

5;+∞

!

Câu 77. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

A. 67

Trang 7

Câu 78. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 2

Câu 79. Khối đa diện đều loại {4; 3} có số mặt

Câu 80. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 81. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3

2a3√ 3

4a3√ 3

3 .

Câu 83. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11+ 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 9

11 − 19

Câu 84. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

a√2

√ 3

Câu 85. Khối đa diện đều loại {3; 4} có số mặt

Câu 86. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 87. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 88. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

3.

Câu 89. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 90. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 91. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 92 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

xαdx= α + 1xα+1 + C, C là hằng số

Trang 8

Câu 93. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

a3√3

2a3√3

5a3√3

3 .

Câu 94. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 95. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 96. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 97. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 98. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

14√3

√ 3

Câu 99. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 100. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 101. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 102. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 103. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Câu 104. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 1 C T = e + 2

e. D T = e + 3

Câu 105. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 106. Tính lim

x→1

x3− 1

x −1

Trang 9

Câu 107. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

a

a

2a

3 .

Câu 108. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 109. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 110. [1] Giá trị của biểu thức 9log3 12bằng

Câu 111. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 112. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 113. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 114. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

8

1

8

9.

Câu 115. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 116. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

13 .

Câu 117. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng là hình lăng trụ đều.

B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ tứ giác đều là hình lập phương.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 118. Tính lim 5

n+ 3

Câu 119. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 6

a3√ 3

24 .

Câu 120. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Trang 10

Câu 121. [2] Phương trình logx4 log2 5 − 12x

12x − 8 = 2 có bao nhiêu nghiệm thực?

Câu 122. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 123. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

√ 5

Câu 124. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 125. Khối đa diện đều loại {4; 3} có số cạnh

Câu 126. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 128. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

4a3√ 6

a3√ 6

3 .

Câu 129 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ B aαβ = (aα)β C aαbα = (ab)α D. a

α

aβ = aα

Câu 130. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

2.

HẾT

Ngày đăng: 02/04/2023, 20:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN