1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 5 (672)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 5 (672)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 154,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 2. Tính lim 5

n+ 3

Câu 3. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2 bằng

Câu 4. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 5. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :

x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng d đồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (1; 0; 2) C ~u= (2; 2; −1) D ~u= (3; 4; −4)

Câu 6. Khối đa diện đều loại {4; 3} có số cạnh

Câu 7. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 8. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 9. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 10. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 11. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

√ 3

3 .

Câu 12. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Trang 2

Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 14. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2√ 5

a2√ 7

a2√ 2

4 .

Câu 15. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

Câu 16. Khối đa diện đều loại {5; 3} có số mặt

Câu 17. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

2.

Câu 18. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 19. [1] Biết log6 √a= 2 thì log6abằng

Câu 20. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 21. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 22. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 23 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 24. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 25 Phát biểu nào sau đây là sai?

A lim 1

n = 0

C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)

Câu 26. [1] Phương trình log3(1 − x)= 2 có nghiệm

Trang 3

Câu 27. Tính lim

x+ 1 4x+ 3 bằng

A. 1

1

Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 29. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

17

√ 34

Câu 30. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

2.

Câu 31. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Câu 32. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.

Câu 33. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 34. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = n2− 3n

n2 D un = 1 − 2n

5n+ n2

Câu 35. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x

A. " 2

5;+∞

!

3

#

"

−2

3;+∞

!

5

#

Câu 36. Hàm số y= x + 1

x có giá trị cực đại là

Câu 37. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 38. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

a√6

√ 6

Trang 4

Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3

a3

a3

√ 3

9 .

Câu 40. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 41. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 42. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 43. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 44. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 46. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 47. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

3

a3

a3

12.

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3

4a3

4a3√ 3

2a3

3 .

Câu 49. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Năm tứ diện đều.

Câu 50. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

2

2

a3√3

6 .

Trang 5

Câu 52. Cho

1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

Câu 53. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 54. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 55. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1 − 2e

4e+ 2. C m=

1+ 2e 4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 56. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

a√3

2a√3

√ 3

Câu 57. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 58. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= loga2 D log2a= − loga2

Câu 59. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 60. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3

a3√ 3

a3√ 6

a3√ 2

16 .

Câu 63. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 64. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 65. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Trang 6

Câu 66. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±1 B m= ±√2 C m= ±√3 D m= ±3

Câu 67. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

(1, 12)3− 1 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 100.(1, 01)3

3 triệu.

Câu 68. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 69. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 70. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 71. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

e.

Câu 72 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 73. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3

a3√3

a3√3

a3√3

12 .

Câu 74. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 75. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

6

a3√ 3

2a3√ 6

a3√ 3

4 .

Câu 76. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2) ∪ (−1; +∞) D −2 < m < −1.

Câu 77. Nhị thập diện đều (20 mặt đều) thuộc loại

Trang 7

Câu 78. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 79. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 80. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 81. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2017

4035

2018.

Câu 82. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 83. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Câu 84. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x

Câu 85. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = ln x − 1 C y0 = x + ln x D y0 = 1 + ln x

Câu 86. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 87. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2

√ 2

Câu 88. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

3

2a3√ 3

a3√ 3

4a3√ 3

3 .

Câu 89. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 90. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 91. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 92. Giá trị của lim

x→1(2x2− 3x+ 1) là

Trang 8

Câu 93. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

3

!n

3

!n

e

!n

Câu 94. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

nhất?

Câu 95. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn

bằng

Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

5

a3

√ 5

a3

√ 5

a3√3

12 .

Câu 97. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 98. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 6

a

√ 6

a

√ 3

2 .

Câu 99 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 100. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 101. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

2e

π

√ 3

2 e

π

Câu 102. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 103. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

2

1

3.

Câu 104. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 105. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Trang 9

Câu 106. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là 1 −

2, phần ảo là −

2, phần ảo là 1 −

√ 3

Câu 107. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 108. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 109. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 110. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 111. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 112 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

dx = x + C, C là hằng số B.

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z 0dx = C, C là hằng số

Câu 113 Mệnh đề nào sau đây sai?

A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

B.

Z

f(x)dx

!0

= f (x)

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 114. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Câu 115. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 116. Tính lim n −1

n2+ 2

Câu 117. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

√ 2

Câu 118. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 119. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Trang 10

C Số đỉnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 120. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

13 .

Câu 121 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B Cả ba đáp án trên.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 122. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 123. Tứ diện đều thuộc loại

Câu 124. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Câu 125. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 126. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 127. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3√3

a3√3

8 .

Câu 128. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 2016 C T = 2016

2017. D T = 1008

Câu 129. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 130. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

1

1

2.

HẾT

Ngày đăng: 02/04/2023, 20:08

w