TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 12213d] Có bao nhiêu giá trị nguyên của m để phương trì[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 2 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 3. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 4. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 5. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. ab
a2+ b2
Câu 6. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= − loga2 C log2a= 1
loga2. D log2a= 1
log2a.
Câu 7. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 8 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Câu 9. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 10. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Trang 2Câu 11. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 12. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 13. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 14. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
13 .
Câu 15. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 16. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 17. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 18. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
6 .
Câu 19. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2) ∪ (−1; +∞) C (−∞; −2]∪[−1; +∞) D −2 < m < −1.
Câu 20. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 21 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 22 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B Cả ba đáp án trên.
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 23. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Trang 3Câu 24. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 25. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
Câu 27. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 28. Khối đa diện đều loại {3; 3} có số mặt
Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Câu 30. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 31. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x +1
x. C y= x −2
2x+ 1. D y= x4− 2x+ 1.
Câu 32. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
Câu 33. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 34. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 35. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 36. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11+ 19
Câu 37. Khối đa diện đều loại {3; 3} có số cạnh
Câu 38. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Trang 4Câu 39. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 40 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B.
Z
f(x)dx
!0
= f (x)
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
Câu 41. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√6
a3√6
a3√3
24 .
Câu 42. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
1
9
2
5.
Câu 43. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 44. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
"
−2
3;+∞
!
3
# D. " 2
5;+∞
!
Câu 45. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 46. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 47. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {1} C. D = R D. D = R \ {0}
Câu 48. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 49. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 50. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 51. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Một tứ diện đều và bốn hình chóp tam giác đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
Trang 5C Năm tứ diện đều.
D Năm hình chóp tam giác đều, không có tứ diện đều.
Câu 52. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 53. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
a√57
19 .
Câu 54. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 55. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 56. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
1 2e.
Câu 57. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
3.
Câu 58. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (1; +∞) C. D = R D. D = (−∞; 1)
Câu 59. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. ab
a2+ b2
Câu 60. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3√ 3
a3√3
a3
3 .
Câu 61. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 62. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 63. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
Câu 64. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Trang 6Câu 65. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 66. Biểu thức nào sau đây không có nghĩa
Câu 67. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 69. Khối đa diện đều loại {4; 3} có số cạnh
Câu 70. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 71. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 73. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 74. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 75. Tìm giới hạn lim2n+ 1
n+ 1
Câu 76 Phát biểu nào sau đây là sai?
C lim √1
nk = 0 với k > 1
Câu 77. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A −1
1
1
2.
Câu 78. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 79. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.
Trang 7Câu 80. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 81. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 82. Thể tích của khối lập phương có cạnh bằng a
√ 2
A 2a3
√
3√ 2
3 .
Câu 83. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 84. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 85. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 86. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 87. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 88. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3
√ 3
a3
√ 3
a3
√ 6
12 .
Câu 89. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 90. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; 3; 3) D A0(−3; −3; 3)
Câu 91. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Trang 8Câu 92. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Câu 93. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 94. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 95. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
1
sin n
n .
Câu 96. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√3
3 .
Câu 98. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 99. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 18 lần C Tăng gấp 27 lần D Tăng gấp 3 lần.
Câu 100. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m ≥ 0 C m > −5
Câu 101. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 6
a
√ 3
2 .
Câu 102. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
12.
Câu 103. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 104. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
6 .
Câu 105. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Trang 9Câu 106. [3] Cho hình lập phương ABCD.A BC D có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a√3
√
√ 3
2 .
Câu 107. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 108. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1 2e3
Câu 109. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 110. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 111 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z k f(x)dx= kZ f(x)dx, k là hằng số
Câu 112. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
A 2√3, 4
√
3, 38 B 8, 16, 32 C 2, 4, 8 D 6, 12, 24.
Câu 113. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 114. Cho I =Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 115. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
Câu 116. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 117. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3
√ 3
a3
√ 3
3
Câu 118. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 119. [4] Xét hàm số f (t) = 9t
9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S
Trang 10Câu 120. Khối đa diện đều loại {5; 3} có số mặt
Câu 121. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 1
3; 1
!
3; 1
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 122. Tính limcos n+ sin n
n2+ 1
Câu 123. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 124. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
√ 3
2 . C V = 3a3√
3 D V = a3
√ 3
2 .
Câu 125. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 126. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
Câu 127. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 128. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 129. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 130. Giá trị của lim
x→1(2x2− 3x+ 1) là
HẾT