1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 5 (514)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 5 (514)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Tập xác định của hàm số y = (x − 1) 1 5 là A D = (1;+∞[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = (−∞; 1) C. D = R D. D = R \ {1}

Câu 2. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 3. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 4. Tính lim

x→2

x+ 2

x bằng?

Câu 5. Thể tích của tứ diện đều cạnh bằng a

A. a

2

a3√ 2

a3√ 2

a3√ 2

4 .

Câu 6. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

4a3√3

a3

3 .

Câu 8. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 9. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.

Câu 10. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

4035

2018.

Câu 11. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 12. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 13 Hình nào trong các hình sau đây không là khối đa diện?

Câu 14. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Trang 2

Câu 15. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3√

3 D V = a3

√ 3

2 .

Câu 16. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3

4a3

√ 3

a3

√ 3

8a3

√ 3

3 .

Câu 18. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 19. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 20. [1] Biết log6 √a= 2 thì log6abằng

Câu 21. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2

!

2

!

2;+∞

!

Câu 22. Tính lim

x→3

x2− 9

x −3

Câu 23. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

1

2

3.

Câu 24. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

24.

Câu 25. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 26. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

5.

Câu 27. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

a

8a

5a

9 .

Trang 3

Câu 28. [3-12214d] Với giá trị nào của m thì phương trình 1

Câu 29. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 30. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 31. [12214d] Với giá trị nào của m thì phương trình 1

Câu 32. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 3) B A0(−3; −3; −3) C A0(−3; 3; 1) D A0(−3; −3; 3)

Câu 34. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

B Trục ảo.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Đường phân giác góc phần tư thứ nhất.

Câu 35. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.

Câu 36. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

√ 3

Câu 37 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

Z

xαdx= α + 1xα+1 + C, C là hằng số

Câu 38. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

Câu 39. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 40. Giá trị của lim

x→1(2x2− 3x+ 1) là

Trang 4

Câu 41. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

40

50.(3)10

10

50.(3)40

20

50.(3)20

20

50.(3)30

450

Câu 42. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 43. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 44. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

A 2

2 và 3 D 2 và 2

√ 2

Câu 45. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x −2

2x+ 1. C y= x4− 2x+ 1. D y= x3− 3x.

Câu 46. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 47. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

4.

Câu 48. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 49. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 50. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 51. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

2 .

Câu 52. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 53. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 54. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 55. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

5

a2√ 7

a2√ 2

11a2

32 .

Câu 56. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 5

Câu 57. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 58. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 59. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 60. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3

a3

√ 3

a3

√ 2

a3

√ 3

12 .

Câu 61. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 62. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 63. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A a

√ 6

a√6

a√6

3 .

Câu 64. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.

Câu 65. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. C y

0 = ln 10

1

10 ln x.

Câu 66. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 67. Biểu thức nào sau đây không có nghĩa

−1

Câu 68. Khối đa diện đều loại {5; 3} có số cạnh

Câu 69. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Một khối chóp tam giác, một khối chóp tứ giác.

C Hai khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 70. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Trang 6

Câu 71. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 72. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 73. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0

: x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y+ 2

2 = z −3

x

2 = y −2

3 = z −3

−1 .

C. x

1 = y

1 = z −1

x −2

2 = y −2

3 = z −3

4 .

Câu 74. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 75. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

15

a3

a3√ 15

a3√ 5

25 .

Câu 76. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

2x ln x. C y

0 = 2x ln x D y0 = 1

ln 2.

Câu 77. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 78. Khối đa diện đều loại {4; 3} có số cạnh

Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3

a3√ 3

a3√ 3

9 .

Câu 80. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

√ 2

Câu 81. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 82. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

nhất?

Câu 83. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 84. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 85. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Trang 7

Câu 86 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C B.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Câu 87. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 88. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 89. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = 100.1, 03

3 triệu.

C m = 100.(1, 01)3

(1, 01)3− 1 triệu.

Câu 90. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 91. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 92. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

3.

Câu 93. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 94. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

D Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 95 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Trang 8

Câu 96. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 97. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 98. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 99. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3√ 3

a3√ 3

3

Câu 100. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 101. Tính lim

x −2

x+ 3

3.

Câu 102. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

9

3

4.

Câu 103. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

2

3.

Câu 104. Khối đa diện đều loại {4; 3} có số mặt

Câu 105. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

Câu 106. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 107. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

2 .

Câu 108. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 109. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q) lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

Trang 9

A (x − 3)2+ (y − 1)2+ (z − 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

C (x − 3)2+ (y + 1)2+ (z + 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

Câu 110. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D Cả ba câu trên đều sai.

Câu 111. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 112. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3

a3√ 3

2a3√ 6

a3√ 6

12 .

Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3

4a3

2a3

4a3√ 3

3 .

Câu 114. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 115. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều đúng.

Câu 116. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 117. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 118. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 119. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 120. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞[ f (x)g(x)]= ab

Trang 10

Câu 121. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 5

Câu 122 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Câu 123. Khối đa diện đều loại {3; 3} có số cạnh

Câu 124. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

6

a3

√ 5

a3

√ 15

3 .

Câu 125. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

23

5

9

25.

Câu 126. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 127. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 128. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 129. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 1 B T = e + 2

e. C T = e + 3 D T = 4 + 2

e.

Câu 130. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

HẾT

Ngày đăng: 02/04/2023, 20:07

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w