TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a,[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√ 6
2 .
Câu 2. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị lớn nhất trên K D f (x) liên tục trên K.
Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 4. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 5. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 6. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m ≤ 0 D m > −5
4.
Câu 7. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2√a2+ b2 B. √ ab
a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 9. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A.
√
2 và 3 B 2 và 2
√
√
2 và 3 D 2 và 3.
Câu 10. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x
2 = y −2
3 = z −3
−1 .
C. x −2
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 12. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Trang 2Câu 13. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
4a3
√ 3
2a3
√ 3
a3
√ 3
2 .
Câu 14. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 15. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
Câu 16. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Câu 17. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2 B P= −1 − i
√ 3
√ 3
Câu 18. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = R C. D = (−∞; 1) D. D = R \ {1}
Câu 19. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
√ 2
a
√ 2
3 .
Câu 20. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 21. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√2
a3√3
a3√3
6 .
Câu 22 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 23. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = (0; +∞) C. D = R D. D = R \ {1}
Câu 24 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B. a
α
aβ = aα C aαβ = (aα)β D aα+β = aα.aβ
Câu 25. Thập nhị diện đều (12 mặt đều) thuộc loại
Trang 3Câu 26. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 27. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 28. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 3
6 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 29. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e−2− 2; m= 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 30. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 31. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 32. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 33. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 34. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 35. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 36. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2 − 1, phần ảo là
√
√ 3
C Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là −
√ 3
Câu 37 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Trang 4Câu 38. Cho
1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
4.
Câu 39. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 40. Tính limcos n+ sin n
n2+ 1
Câu 41. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 42. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 43. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 44. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 9
3
3
4.
Câu 45. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 46. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 47. Tính lim n −1
n2+ 2
Câu 48. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 49. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 50. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 51. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 52. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Trang 5Câu 53. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 54. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 55. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 3
a3
√ 5
a3
√ 5
4 .
Câu 57. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3
a3√3
4 .
Câu 58. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 59. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 60. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 61. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 62. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 63. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 64. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a
3a√38
3a√58
29 .
Câu 65. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 66. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 67. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Trang 6Câu 68. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Câu 69. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 70. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 71. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Giảm đi n lần C Không thay đổi D Tăng lên (n − 1) lần.
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 73. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 74. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 75. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 76. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 3
Câu 77. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3√ 3
a3
3√ 3
Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 79. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 80. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
2x
C y = logaxtrong đó a= √3 − 2 D y = logπ
4 x
Trang 7Câu 81. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng
A. a
√
6
a√3
a√6
a√6
3 .
Câu 82. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 83. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2016
2017. C T = 2016 D T = 2017
Câu 84. Khối đa diện đều loại {3; 5} có số mặt
Câu 85. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 86. Tính lim 2n
2− 1 3n6+ n4
Câu 87. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng 1
3; 1
!
3
!
Câu 88. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 89 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 90. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 91. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
3
Câu 92. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 93. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 94. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Trang 8Câu 95. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ 2 sin 2x C −1+ sin x cos x D 1 − sin 2x.
Câu 96. Khối đa diện đều loại {4; 3} có số mặt
Câu 97. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2
√ 2
a2
√ 7
a2
√ 5
16 .
Câu 98. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 99. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1728
23
1079
1637
4913.
Câu 100. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 101. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.
Câu 102. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 103. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 104. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 105. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 106. Khối lập phương thuộc loại
Câu 107. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. D V = 3S h
Câu 108. Khối đa diện đều loại {5; 3} có số mặt
Câu 109. Khối đa diện đều loại {3; 4} có số mặt
Trang 9Câu 110. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
a√6
√ 6
Câu 111. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2− 2
5n − 3n2 C un = 1 − 2n
5n+ n2 D un = n2+ n + 1
(n+ 1)2
Câu 112. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 113. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 114. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 115. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 116. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 117. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 118. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 119. Khối đa diện đều loại {3; 4} có số cạnh
Câu 120. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 121. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3
√ 5
a3
√ 15
3√ 6
Câu 123. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 124. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Trang 10Câu 125. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 126. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2
− 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 127. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 128 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 129. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
2a3√ 6
a3
√ 3
2 .
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
2e
π
√ 3
2 e
π
HẾT