1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg (303)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 153,36 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = x3 − 2x2 + x + 1 Mệnh đề nào dưới đây đúng?[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng 1

3; 1

!

Câu 2. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.

Câu 3. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x − m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 4. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

3√ 2

a3

√ 3

a3

√ 3

2 .

Câu 6. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 7. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 8. Bát diện đều thuộc loại

Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = (x2

− 2)e2xtrên đoạn [−1; 2] là

Câu 10. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 11. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 12. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 13. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Trang 2

Câu 14. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 15. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

3a√38

a

√ 38

3a

29.

Câu 16. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 17. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 18. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x − 3)2+ (y − 1)2+ (z − 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

C (x − 3)2+ (y + 1)2+ (z + 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 20. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 21. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 22. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 23. Tính limcos n+ sin n

n2+ 1

Câu 24. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞

f(x)

g(x) = a

Câu 25. Biểu thức nào sau đây không có nghĩa

Câu 26. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp

Trang 3

theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√6

a3√3

a3√2

16 .

Câu 28. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 29. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 30. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

24 .

Câu 31. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 32. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 33. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 34. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 35. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 36. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

Câu 37. Tính lim n −1

n2+ 2

Câu 38. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 ≤ m ≤ −1 D −2 < m < −1.

Câu 39. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√6

a3√6

a3√6

6 .

Trang 4

Câu 40. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

5

#

B. " 2

5;+∞

!

"

−2

3;+∞

!

3

#

Câu 41. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 3) B A0(−3; 3; 1) C A0(−3; −3; 3) D A0(−3; −3; −3)

Câu 42 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Nhị thập diện đều B Thập nhị diện đều C Bát diện đều D Tứ diện đều.

Câu 43. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 1

e. C M = 1

e, m = 0 D M = e, m = 0

Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 45. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

13

5

23

100.

Câu 46. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A 2 và 2

2 và 3

Câu 47. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 48. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 49. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11+ 19

9 . C Pmin = 9

11 − 19

9 . D Pmin= 18

11 − 29

21 .

Câu 50. Khối đa diện đều loại {5; 3} có số cạnh

Câu 51. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 52. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A − 1

1

Trang 5

Câu 53. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 54. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 55. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 56. Khối lập phương thuộc loại

Câu 57. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 58. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 59. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 60. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 61. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

1

8

1

3.

Câu 62. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0; 2).

Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 8 lần B Tăng gấp 4 lần C Tăng gấp 6 lần D Tăng gấp đôi.

Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. b

a2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 65. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24

Câu 66. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

a3√3

5a3√3

2a3√3

3 .

Trang 6

Câu 67. Cho hai đường thẳng phân biệt d và d đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 68. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 69. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 2

2 e

π

√ 3

2 e

π

6

Câu 70. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

√ 5

Câu 71. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 72. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 73. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D Cả ba câu trên đều sai.

Câu 74. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 2

Câu 75. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 76. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = −ey+ 1

Câu 77. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 78. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 79. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Câu 80. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Trang 7

Câu 81. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 82. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

Câu 83. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 84. Khối đa diện đều loại {3; 3} có số cạnh

Câu 85. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

4 .

Câu 86. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 87. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 88. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

Câu 89. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1 B xy0 = ey

− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1

Câu 90. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 91. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

11a2

a2√2

a2√7

8 .

Câu 92. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 93. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 94. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Bốn tứ diện đều và một hình chóp tam giác đều.

D Năm hình chóp tam giác đều, không có tứ diện đều.

Trang 8

Câu 95. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 96. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 10 D f0(0)= 1

Câu 97. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

A 3

Câu 98. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 99. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

C.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

Câu 100. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối lập phương B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 101. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 102. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

2 .

Câu 103. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 104. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 105. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Không thay đổi C Tăng lên (n − 1) lần D Tăng lên n lần.

Câu 106. Tìm giới hạn lim2n+ 1

n+ 1

Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√5

a3√5

a3√5

4 .

Trang 9

Câu 108. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

1

2

3.

Câu 109. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 110. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 111. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = R \ {1} C. D = R \ {0} D. D = (0; +∞)

Câu 112. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 113. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e−2+ 2; m = 1

C M = e−2+ 1; m = 1 D M = e2− 2; m = e−2+ 2

Câu 114. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

2.

Câu 115. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 116. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 C 8, 16, 32 D 2, 4, 8.

Câu 117. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n2− 4n C un = 6

5

!n D un = n3− 3n

n+ 1 .

Câu 118. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 119. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 120. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 121. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1

0 = 1

2x ln x.

Câu 122. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 123. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 124. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Trang 10

Câu 125. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3

√ 6

a3

√ 6

a3

√ 3

4 .

Câu 126. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 127. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 128. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 129. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 130. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

HẾT

Ngày đăng: 02/04/2023, 19:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN