TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo h[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 2. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√ 3
a3
4a3√ 3
3 .
Câu 3. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3
√ 2
a3
√ 2
a3
√ 2
6 .
Câu 4. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 5. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 6. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 7. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = (−2; 1) B. D = R \ {1; 2} C. D = R D. D = [2; 1]
Câu 8. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 9. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 10. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
√
2 và 3 C 2 và 2
√
√
2 và 3
Câu 11. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
!
3
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng 1
3; 1
!
Câu 12. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 13. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = (0; +∞) C. D = R D. D = R \ {0}
Trang 2Câu 14 Hình nào trong các hình sau đây không là khối đa diện?
Câu 15. Khối đa diện đều loại {3; 5} có số cạnh
Câu 16. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 17. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 18. Khối đa diện đều loại {4; 3} có số cạnh
Câu 19. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 20. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 21. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 22. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
14√3
3 .
Câu 23. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 24. Khối đa diện đều loại {3; 3} có số cạnh
Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3
2a3√ 3
4a3√ 3
2a3
3 .
Câu 26. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 27. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 28. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 29. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Trang 3Câu 30. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 20, 128 triệu đồng.
Câu 31. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 32. Tính lim
x→1
x3− 1
x −1
Câu 33. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 34. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1+ 2e
4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 35. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
3
2
3.
Câu 36. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1
2x3ln 10. C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 37 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= α + 1xα+1 + C, C là hằng số B.
Z
dx = x + C, C là hằng số
C.
Z
Z 1
xdx= ln |x| + C, C là hằng số
Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 39 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= kZ f(x)dx, k là hằng số B.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 40. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞[ f (x)g(x)]= ab
C lim
x→ +∞
f(x)
g(x) = a
Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 3
4 .
Câu 43. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Trang 4Câu 44. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.
C f (x) có giá trị lớn nhất trên K D f (x) liên tục trên K.
Câu 45. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 47. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 48. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2016
4035
2017
Câu 49. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 50. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1
e. C M = e, m = 1 D M = 1
e, m = 0
Câu 51. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 52. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 53. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 54. Khối đa diện đều loại {4; 3} có số mặt
Câu 55. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 56. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 57. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Trang 5Câu 58. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A −1
1
1
e2
Câu 59. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 60. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 61 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aαbα = (ab)α C aα+β = aα.aβ D aαβ = (aα
)β
Câu 62. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 63. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 64. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
3√ 3
a3
√ 3
9 .
Câu 66. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên đúng B Cả hai câu trên sai C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 67. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 68. Tính lim
x→3
x2− 9
x −3
Câu 69. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Trang 6Câu 70. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
2; 3
!
Câu 71. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 72. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logπ
2x
Câu 73 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 74 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx D.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
Câu 75. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 76. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√ 5
Câu 77. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
2e
π
√ 2
2 e
π
4
Câu 78. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 79. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 80. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 81. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 82 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Tứ diện đều C Nhị thập diện đều D Bát diện đều.
Trang 7Câu 83. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.
Câu 84. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
B.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 85. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 86. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (3; 4; −4) D ~u= (2; 2; −1)
Câu 87 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B.
Z
f(x)dx
!0
= f (x)
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
Câu 88. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 89. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 90. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
Câu 91. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 92. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 93. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Trang 8Câu 94. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|.
Câu 95. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 3
a3
√ 6
24 .
Câu 96 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 2, 22 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng.
Câu 97. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
Câu 98. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
23
13
9
25.
Câu 99. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 100. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = 1 + ln x C y0 = x + ln x D y0 = ln x − 1
Câu 101. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
C Năm tứ diện đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 102. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 103. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 104. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 105 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
Trang 9(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 106. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 107. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1 2e3
Câu 108. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√ 3
a3√ 3
a3√ 3
12 .
Câu 109. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 110. Tính lim
x→2
x+ 2
x bằng?
Câu 111. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 112. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
3√
3√ 2
12 .
Câu 114. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 115. [1] Đạo hàm của làm số y = log x là
0 = 1
0 = 1
xln 10. D y
0 = ln 10
x .
Câu 116. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 117. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (0; 2).
C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 118. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1637
1079
1728
23
68.
Trang 10Câu 119. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 120. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 121. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
3S h. D V = 1
2S h.
Câu 122. Bát diện đều thuộc loại
Câu 123. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 124. Khối đa diện đều loại {3; 3} có số mặt
Câu 125. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 1
3
√ 3
2 .
Câu 126. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 127. Thể tích của khối lập phương có cạnh bằng a
√ 2
√
3√ 2
3 .
Câu 128. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 129. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
1
8
3.
Câu 130. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
HẾT