TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 2. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A= a Khoảng cách giữa hai đường thẳng S B và AD bằng
√ 2
√
√ 2
2 .
Câu 3. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m−2 có nghiệm duy nhất?
Câu 4. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
C y = logπ
Câu 5. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 6. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 7. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 − ln x
Câu 8. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
6.
Câu 9. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√ 5
11a2
a2√ 7
8 .
Câu 10. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 11. Khối đa diện đều loại {5; 3} có số cạnh
Câu 12 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C.
Z
f(x)dx
!0
= f (x)
D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
Câu 13. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Trang 2Câu 14. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
3 . C V = πa3
√ 6
6 . D V = πa3
√ 3
6 .
Câu 15. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 16. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 17 Phát biểu nào sau đây là sai?
nk = 0
C lim1
Câu 18. Tính lim
x→2
x+ 2
x bằng?
Câu 19. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
2a
a
a
3.
Câu 20. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 21. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 22. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 23. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục ảo.
D Trục thực.
Câu 24. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 25. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Trang 3Câu 26. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0 D m ≤ 0.
Câu 27. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 28. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 29. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 30. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 31. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 32. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
1
3
2.
Câu 33. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 34. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 35. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√ 2
Câu 36. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 37 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B Cả ba đáp án trên.
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 38. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 8
√
√ 3
14√3
√ 3
Câu 39. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
a3√6
2a3√6
3 .
Trang 4Câu 40. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 41. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 42. [1] Biết log6 √a= 2 thì log6abằng
Câu 43. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 44. Tính limcos n+ sin n
n2+ 1
Câu 45. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 46. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3
Câu 48. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = −2
3
!n C un = n2− 4n D un = 6
5
!n
Câu 49. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 50. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 51. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 52. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 53. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 54. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 2
4 .
Câu 55. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Trang 5Câu 56. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 57. [1] Đạo hàm của làm số y = log x là
A y0 = 1
0 = ln 10
1
0 = 1
xln 10.
Câu 58 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 59. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3√ 15
a3√ 15
a3√ 5
25 .
Câu 60. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 61. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 62. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 63. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 64. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 65. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1 − i
√ 3
2 . C P= −1+ i
√ 3
2 . D P= 2
Câu 66. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 67. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 68. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 69 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ B aαβ = (aα)β C aαbα = (ab)α D. a
α
aβ = aα
Câu 70. Tính lim
x→1
x3− 1
x −1
Trang 6Câu 71. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
1
Câu 72. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
2 .
Câu 73. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
a√38
3a√38
3a√58
29 .
Câu 74. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
a3√3
3√ 3
Câu 75. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 76. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 77. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 78. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
3√
3√ 15
a3
√ 5
3 .
Câu 80. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
3√ 3
a3√3
6 .
Câu 81. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√ 17
√
√ 68
Câu 82. Biểu thức nào sau đây không có nghĩa
√
√
Câu 83. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị lớn nhất trên K B f (x) có giá trị nhỏ nhất trên K.
Câu 84. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2 và 2
√
√
√
2 và 3 D 2 và 3.
Câu 85. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Trang 7Câu 86. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 87. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 88. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 89. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 90. Tìm giới hạn lim2n+ 1
n+ 1
Câu 91. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 92. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 93. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
Câu 94. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 95. Khối đa diện đều loại {3; 4} có số mặt
Câu 96. [1] Tính lim1 − 2n
3n+ 1 bằng?
1
2
3.
Câu 97. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 98. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 99. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 100. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 101. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√2
a3√3
4 .
Trang 8Câu 102. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
20
50.(3)30
20
50.(3)20
40
50.(3)10
10
50.(3)40
450
Câu 103. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 104 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 7
√
√
√ 2
Câu 106. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 3
a3
√ 6
24 .
Câu 107. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 108. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A. 1
1
Câu 109. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
4 .
Câu 110. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là √2 − 1, phần ảo là −
√
3 D Phần thực là √2 − 1, phần ảo là
√ 3
Câu 111. Khối đa diện đều loại {3; 5} có số mặt
Câu 112. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 3n
n2
Câu 113. Tính lim 5
n+ 3
Trang 9Câu 114. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều đúng D Cả hai đều sai.
Câu 115. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = R \ {0} C. D = R \ {1} D. D = (0; +∞)
Câu 116. [3-1214d] Cho hàm số y= x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Câu 117. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3√ 3
a3√ 2
a3√ 3
48 .
Câu 119. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 120. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 121. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
a3√3
2a3√6
a3√3
2 .
Câu 122. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 123. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3
a3√ 3
3 .
Câu 124. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; −3; 3) B A0(−3; 3; 3) C A0(−3; −3; −3) D A0(−3; 3; 1)
Câu 125. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 2
Câu 126. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
A. 3
Trang 10Câu 127. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 128. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 129. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 130. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
HẾT