1. Trang chủ
  2. » Tất cả

Chapter 3 set

26 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Sets
Tác giả Huynh Tuong Nguyen, Tran Vinh Tan
Trường học University of Technology - VNUHCM
Chuyên ngành Computer Science and Engineering
Thể loại Chương
Năm xuất bản 2011
Định dạng
Số trang 26
Dung lượng 294,26 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sets Sets Huynh Tuong Nguyen, Tran Vinh Tan Contents Sets Set Operation 3 1 Chapter 3 Sets Discrete Structures for Computing on 21 March 2011 Huynh Tuong Nguyen, Tran Vinh Tan Faculty of Computer Scie[.]

Trang 1

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Chapter 3

Sets

Discrete Structures for Computing on 21 March 2011

Huynh Tuong Nguyen, Tran Vinh TanFaculty of Computer Science and Engineering

University of Technology - VNUHCM

Trang 2

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Contents

2 Set Operation

Trang 3

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Set Definition

• Set is afundamentaldiscrete structure on which all discrete

structures are built

• Sets are used to group objects, which often have thesame

properties

Example

• Set of all the students who are currently taking Discrete

Mathematics 1 course

• Set of all the subjects that K2011 students have to take in

the first semester

• Set of natural numbers N

Definition

Asetis an unordered collection of objects

The objects in a set are called theelements(phần tử ) of the set

A set is said tocontain(chứa) its elements

Trang 4

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Notations

Definition

• a ∈ A: a is an element of the set A

• a /∈ A: a isnotan element of the set A

Definition (Set Description)

• The set V of all vowels in English alphabet, V = {a, e, i, o, u}

• Set of all real numbers greater than 1???

{x | x ∈ R, x > 1}

{x | x > 1}

{x : x > 1}

Trang 5

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 6

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Venn Diagram

• John Venn in 1881

• Universal set(tập vũ trụ) is

represented by a rectangle

• Circlesand other

geometrical figuresare used

to represent sets

• Pointsare used to represent

particular elements in set

Trang 7

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Special Sets

• Empty set(tập rỗng ) has no elements, denoted by ∅, or {}

• A set with one element is called asingleton set

• What is {∅}?

• Answer: singleton

Trang 8

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Subset

Definition

The set A is called asubset(tập con) of B iff every element of A

is also an element of B, denoted by A ⊆ B

If A 6= B, we write A ⊂ B and say A is aproper subset(tập con

thực sự) of B

• ∀x(x ∈ A → x ∈ B)

• For every set S,

(i)∅ ⊆ S,(ii)S ⊆ S

Trang 9

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Cardinality

Definition

If S has exactly n distinct elements where n is non-negative

integers, S isfinite set(tập hữu hạn), and n iscardinality(bản

số ) of S, denoted by |S|

Example

• A is the set of odd positive integers less than 10 |A| = 5

• S is the letters in Vietnamese alphabet, |S| = 29

Trang 10

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Power Set

Definition

Given a set S, thepower set(tập lũy thừa) of S is the set of all

subsets of the set S, denoted byP (S)

Example

What is the power set of {0, 1, 2}?

P ({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

Example

• What is the power set of the empty set?

• What is the power set of the set {∅}

Trang 11

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Power Set

Theorem

If a set has n elements, then its power set has 2n elements

Prove using induction!

Trang 12

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Ordered n-tuples

Definition

Theordered n-tuple(dãy sắp thứ tự) (a1, a2, , an) is the

ordered collection that has a1 as its first element, a2 as its second

element, , and an as its nth element

Trang 13

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Cartesian Product

• René Descartes (1596–1650)

Definition

Let A and B be sets TheCartesian product(tích Đề-các) of A

and B, denoted by A × B, is the set of ordered pairs (a, b), where

Trang 14

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 15

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 16

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 17

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 18

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 19

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 20

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 21

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 22

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Method of Proofs of Set Equations

To prove A = B, we could use

• Venn diagrams

• Prove that A ⊆ B and B ⊆ A

• Usemembership table

• Use set builder notation and logical equivalences

Trang 23

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set OperationExample (1)

Example

Verify the distributive rule P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R)

Trang 24

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 25

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Trang 26

Huynh Tuong Nguyen, Tran Vinh Tan

Contents Sets Set Operation

Ngày đăng: 02/04/2023, 06:12