Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 5 B 1 C −1 D 0 Câu 2 [1225d] Tìm tham số thực m để phương trình[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 2. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
A. 1
2
e3
Câu 4. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 6a3
√ 3
2 . C V = a3
√ 3
2 . D V = 3a3√
3
Câu 5. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 2
√
√ 2
Câu 6. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 20, 128 triệu đồng C 50, 7 triệu đồng D 3, 5 triệu đồng.
Câu 7. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 8. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = x + ln x C y0 = 1 + ln x D y0 = ln x − 1
Câu 10. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 11 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
Câu 12. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 6
6 . D V = πa3
√ 3
2 .
Câu 13. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Trang 2Câu 14. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 15. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2] ∪ [−1; +∞) C (−∞; −2)∪(−1; +∞) D −2 < m < −1.
Câu 16. Tính lim
x→1
x3− 1
x −1
Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
√ 3
a3
√ 3
3√ 3
Câu 18. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 19. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
3.
Câu 20. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a√57
2a√57
√ 57
Câu 21. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 22. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 23. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 6
a
√ 3
2 .
Câu 24. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số mặt của khối chóp bằng 2n+1.
Trang 3Câu 25 Hình nào trong các hình sau đây không là khối đa diện?
Câu 26. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 27. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 28. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 1
0 = 1
2x ln x. D y
0 = 2x ln 2
Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
4a3√3
a3√3
8a3√3
9 .
Câu 30. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±3 C m= ±√3 D m= ±1
Câu 31. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0;+∞)
Câu 32. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 33. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 34. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Không thay đổi B Tăng lên n lần C Giảm đi n lần D Tăng lên (n − 1) lần.
Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
a3
2a3√ 3
3 .
Câu 36. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R \ {1; 2} B. D = (−2; 1) C. D = R D. D = [2; 1]
Câu 37. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 38. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
16 .
Câu 39 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=
Z
f(x)dx Z g(x)dx
Trang 4Câu 40. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
B. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
Câu 41. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 42. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
2 D 3+ 4√2
Câu 43. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√
√ 3
3 .
Câu 44 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. D.
Z
dx = x + C, C là hằng số
Câu 45. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 46. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 47. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Câu 48. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→af(x)= f (a) B f (x) có giới hạn hữu hạn khi x → a.
C lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 49. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 50. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 51. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 52. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Trang 5Câu 53. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
5a3√3
a3√3
4a3√3
3 .
Câu 54. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 55. Hàm số y= x + 1
x có giá trị cực đại là
Câu 56 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.
Câu 57. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Câu 58. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
3
!n
e
!n
Câu 59. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 60. Tính lim
x→2
x+ 2
x bằng?
Câu 61. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (1; +∞) C. D = (−∞; 1) D. D = R
Câu 62. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 63. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 6
Câu 64. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
2 D V = 2a3
Câu 65. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 3 C T = 4 + 2
e. D T = e + 1
Trang 6Câu 66 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 67. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 68. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 69. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Năm tứ diện đều.
Câu 70. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 71. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 9 lần D Tăng gấp 18 lần.
Câu 72. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 73. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 74. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 75. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 76. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 77. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 78. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 79. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Trang 7Câu 80. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
a√38
3a√38
3a√58
29 .
Câu 81. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 82. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 83 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D.
Z
f(x)dx
!0
= f (x)
Câu 84. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√6
a3√6
a3√3
24 .
Câu 85. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 86. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
√ 15
a3
a3
√ 5
25 .
Câu 87. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
a√57
a√57
19 .
Câu 88. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A a
√
√ 2
a√2
√ 2
Câu 89. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 90. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 91. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
9
5
23
100.
Trang 8Câu 92. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 93. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 94. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 95. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a
a
a
√ 2
3 .
Câu 96. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 97 Phát biểu nào sau đây là sai?
A lim1
C lim 1
Câu 98. Khối đa diện đều loại {3; 3} có số mặt
Câu 99. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 100. Tính lim
x→ +∞
x −2
x+ 3
A −2
Câu 101. Tính lim n −1
n2+ 2
Câu 102. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 103. Khối đa diện đều loại {4; 3} có số cạnh
Câu 104. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 105. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 106. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 107. Khối đa diện đều loại {3; 3} có số đỉnh
Trang 9Câu 108. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 109. [1] Biết log6 √a= 2 thì log6abằng
Câu 110. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 111. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 0 C M = 1
e, m = 0 D M = e, m = 1
Câu 112. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 113. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
4 .
Câu 114. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 115. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
3S h. C V = 1
2S h. D V = S h
Câu 116. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 117. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 118 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim qn= 1 với |q| > 1
C lim un= c (Với un = c là hằng số) D lim √1
n = 0
Câu 119. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 120. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
Câu 121. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016
Câu 122. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là −1.
Trang 10Câu 123. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 2a
3√
6
3√
3√ 6
a3√ 6
3 .
Câu 124. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 125. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√ 17
√ 68
Câu 126. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 128. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A 2
√
√
√ 13
√ 2
Câu 129. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 130. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
HẾT