1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 7 (52)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 7 (52)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2016
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 1131d] Tính lim ( 1 1 + 1 1 + 2 + + 1 1 + 2 + + n ) A 3 2 B 5 2 C 2 D +∞ Câu 2 Trong các khẳng định sau[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

5

Câu 2 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B Cả ba đáp án trên.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 3. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 4. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

2017

2018.

Câu 5. Tính lim 5

n+ 3

Câu 6. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 7. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 8. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 9. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) liên tục trên K.

C f (x) có giá trị nhỏ nhất trên K D f (x) xác định trên K.

Câu 10. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016

2017. C T = 2017 D T = 2016

Câu 11. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 12. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Trang 2

Câu 13. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x

lần lượt là

2 và 3 D 2 và 2

√ 2

Câu 14. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = (−2; 1) D. D = R

Câu 15 Phát biểu nào sau đây là sai?

A lim1

nk = 0

Câu 16. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 17. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 18. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 19. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 20. Khối lập phương thuộc loại

Câu 21. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = ln 10

0 = 1

xln 10.

Câu 22. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 23. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 24. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 25. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 26. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 27. Khối đa diện đều loại {3; 3} có số đỉnh

Trang 3

Câu 28. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

Câu 29. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 30. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

4a3

2a3

2a3√ 3

3 .

Câu 31. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 32. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 33. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞

f(x)

g(x) = a

Câu 34. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 35. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

5

#

"

−2

3;+∞

!

3

#

Câu 36. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 37. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 38. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 39. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 40. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 42. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 0

2.

Trang 4

Câu 43. Tính lim

x→1

x3− 1

x −1

Câu 44. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

4 < m < 0 D m > −5

4.

Câu 45. Biểu thức nào sau đây không có nghĩa

√ 2)0

Câu 46. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 47. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 48. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 49. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 50. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√5

a3√5

a3√3

12 .

Câu 51. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 52. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

Câu 53. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 54. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ tứ giác đều là hình lập phương.

Câu 55. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 56. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 57. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Trang 5

Câu 58. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 59. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Đường phân giác góc phần tư thứ nhất.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Trục thực.

D Trục ảo.

Câu 60. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.

Câu 61. Tứ diện đều thuộc loại

Câu 62. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1.

Câu 63. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 64. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√ 6

a3√ 6

a3√ 6

18 .

Câu 65. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 6

6 . C V = πa3

√ 3

2 . D V = πa3

√ 3

3 .

Câu 66. Tìm giới hạn lim2n+ 1

n+ 1

Câu 67. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

3 .

Câu 68. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 69. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. 2a

3

√ 3

a√3

3 .

Câu 70. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! C. " 5

2; 3

!

Trang 6

Câu 71. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 72. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 73. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 74. Khối đa diện đều loại {4; 3} có số cạnh

Câu 75. Khối đa diện đều loại {3; 3} có số mặt

Câu 76. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 77. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Câu 78. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 6

a

√ 3

a

√ 6

2 .

Câu 79. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±1 B m= ±√3 C m= ±√2 D m= ±3

Câu 80 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2

x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 81. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = 3S h D V = S h

Câu 82 Phát biểu nào sau đây là sai?

A lim 1

nk = 0 với k > 1 B lim √1

n = 0

C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1

Câu 83. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 84 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Trang 7

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn = +∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 85. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1 − 2e

4e+ 2. C m=

1+ 2e 4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 86. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 87. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 88 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 89. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 90. Khối đa diện đều loại {3; 4} có số cạnh

Câu 91. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 92. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 93. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 94. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ 1

2

a2+ b2 D. ab

a2+ b2

Câu 95. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.

Câu 96. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Trang 8

Câu 97. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√3

12 .

Câu 98. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

5a

2a

a

9.

Câu 99. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 100. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = 1 + ln x C y0 = 1 − ln x D y0 = x + ln x

Câu 101. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 102. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

C Phần thực là −1, phần ảo là −4 D Phần thực là −1, phần ảo là 4.

Câu 103. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 3

3√

3√ 2

2 .

Câu 104. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 105 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 106. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

n+ 1

1

n.

Câu 107. Tính lim

x→2

x+ 2

x bằng?

Câu 108. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= 10 C f0(0)= ln 10 D f0(0)= 1

Câu 109. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Trang 9

Câu 110 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z k f(x)dx= kZ f(x)dx, k là hằng số

C.

Z

f(x)dx

!0

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

Câu 111. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 112. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 6

a3√ 2

a3√ 3

48 .

Câu 114. Tính lim n −1

n2+ 2

Câu 115. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 116. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 117 Hình nào trong các hình sau đây không là khối đa diện?

Câu 118. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 119. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng 1

3; 1

!

Câu 120. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

4.

Câu 121. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 122. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

√ 57

a√57

19 .

Trang 10

Câu 123. Tính limcos n+ sin n

n2+ 1

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 125. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e +2

e. B T = 4 + 2

e. C T = e + 3 D T = e + 1

Câu 126. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 127. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 128. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 129. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 130. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 2

a3√3

a3√3

12 .

HẾT

Ngày đăng: 01/04/2023, 15:51