1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 4 (34)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (34)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,43 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là A [1; 2] B [−1; 2) C (−∞;+∞) D (1; 2) Câu 2 Biểu diễn hìn[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 2. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 3. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 4. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (−∞; 1) B. D = R \ {1} C. D = (1; +∞) D. D = R

Câu 5. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 6. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

1

1

3.

Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 8 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α C. a

α

aβ = aα D aα+β = aα.aβ

Câu 9. Cho

Z 1

0

xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 10. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 11. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 13. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 14. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 2x ln 2 C y0 = 1

2x ln x. D y

0 = 2x ln x

Câu 15 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

Trang 2

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx

!

= f (x)

Câu 16. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

5

2.

Câu 17. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 18. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 19. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 20. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

2.

Câu 21. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 22. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2

√ 5

a2

√ 2

11a2

32 .

Câu 23. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 24. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√3

a3√3

3

Câu 26. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 27. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 28. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

a3√3

a3√3

2a3√6

9 .

Trang 3

Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

4a3√3

a3

3 .

Câu 30. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3√3

3 .

Câu 32. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 33. Tìm giới hạn lim2n+ 1

n+ 1

Câu 34. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 35. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 36. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 37. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 38. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

3 . C V = πa3

√ 3

2 . D V = πa3

√ 6

6 .

Câu 39. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 40. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

9

3

Câu 41. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 42. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 3

a3√ 2

a3√ 3

24 .

Trang 4

Câu 43. Cho hai đường thẳng phân biệt d và d đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 45. Tính lim

x→2

x+ 2

x bằng?

Câu 46. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 47. Tính lim 5

n+ 3

Câu 48. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

12 .

Câu 49. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 50. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = 1 + ln x C y0 = 1 − ln x D y0 = ln x − 1

Câu 51 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B Cả ba đáp án trên.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 52. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 53. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2

!

2;+∞

!

2;+∞

!

Câu 54. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= 1

e, m = 0 C M = e, m = 1 D M = e, m = 1

e.

Câu 55. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. D V = 3S h

Câu 56. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Trang 5

Câu 57. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±1 B m= ±√2 C m= ±√3 D m= ±3

Câu 58. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 59. [1] Giá trị của biểu thức 9log3 12bằng

Câu 60. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

13

100.

Câu 61. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 62. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

1

1

8

9.

Câu 63. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

√ 6

Câu 64. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 65. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

a√38

3a√38

3a

29.

Câu 66. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 67. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 68. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 69. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 70. [1] Đạo hàm của làm số y = log x là

0 = 1

0 = 1

xln 10. D y

0 = ln 10

x .

Trang 6

Câu 71. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 120.(1, 12)3

(1, 12)3− 1 triệu.

Câu 72. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. ab

a2+ b2 C. √ ab

2

a2+ b2

Câu 73. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 74. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 75. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 76. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 77. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

Câu 78. Khối đa diện đều loại {3; 4} có số cạnh

Câu 79. Tìm giá trị lớn chất của hàm số y= x3

− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 80. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

A. 1

1

Câu 81. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

a3√ 6

2a3√ 6

3 .

Câu 82. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

3 . D V = 2a3

Câu 83. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Trang 7

Câu 84. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 85. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 86. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e 4e+ 2.

Câu 87. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 2017 C T = 1008 D T = 2016

2017.

Câu 88. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.

Câu 89 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng.

Câu 90. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

8a3√ 3

a3

√ 3

4a3√ 3

9 .

Câu 92. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 93. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Bốn tứ diện đều và một hình chóp tam giác đều.

D Năm tứ diện đều.

Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 95 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

dx = x + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

Câu 96. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3

a3√3

3

Trang 8

Câu 97. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2016

2017.

Câu 98. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 100. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 101. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 102. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 103. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A a3

3√ 3

a3√3

a3

4 .

Câu 104. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 105. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 106. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 2

Câu 107. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 108. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

√ 15

a3

a3

√ 5

25 .

Câu 109. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều sai.

Trang 9

Câu 110. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 3, 5 triệu đồng.

Câu 111. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.

Câu 112. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 113. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 114. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

2e.

Câu 115. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e2

Câu 116. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 117. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

3.

Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√15

3√

3√ 6

3 .

Câu 119. Khối đa diện đều loại {3; 5} có số mặt

Câu 120. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

C Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 121. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 122. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

1

2.

Trang 10

Câu 123. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 124. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 125. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 126. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 127. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

Câu 128. Tính limcos n+ sin n

n2+ 1

Câu 129 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 130. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A −3 − 4

√ 2

HẾT

Ngày đăng: 01/04/2023, 14:02