Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho z1, z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0 Tính P = z1z2(z1 + z2) A P = 10 B P = 21 C P = −[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 2. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 3. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.
Câu 4. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. C log2a= loga2 D log2a= 1
log2a.
Câu 5. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 6. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 6
6 . C V = πa3
√ 3
6 . D V = πa3
√ 3
3 .
Câu 7. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 8. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 9. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 10. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√3
4a3√3
a3
3 .
Trang 2Câu 12. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
2x ln x. C y0 = 1
0 = 2x ln x
Câu 13. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e−2− 2; m= 1
C M = e2
− 2; m = e−2+ 2 D M = e−2+ 2; m = 1
Câu 14. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞
f(x)
g(x) = a
Câu 15. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3√ 3
3√
3√ 3
6 .
Câu 17. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 18. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 19. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là −3, phần ảo là 4 D Phần thực là −3, phần ảo là −4.
Câu 20. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = n2− 3n
n2 C un = n2+ n + 1
(n+ 1)2 D un = 1 − 2n
5n+ n2
Câu 21. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
Câu 22. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Không thay đổi C Tăng lên (n − 1) lần D Tăng lên n lần.
Câu 23. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Trang 3Câu 24. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√
√
√ 6
2 .
Câu 25. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
12.
Câu 26. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 27. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 28. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 29. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
A. 2
Câu 30 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Cả ba đáp án trên.
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 31. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a√3
√
√ 3
2 .
Câu 32. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1
Câu 33. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 34. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 35. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều sai D Cả hai đều đúng.
Trang 4Câu 36. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 37. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 38. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
19 .
Câu 39. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 40 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B aα+β= aα.aβ C aαβ = (aα)β D. a
α
aβ = aα
Câu 41. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
3a
3a
√ 58
a√38
29 .
Câu 42. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
A P= −1+ i
√ 3
2 . B P= −1 − i
√ 3
Câu 43. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 44. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
23
9
13
100.
Câu 45. Khối đa diện đều loại {3; 4} có số cạnh
Câu 46. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 47. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 48. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 49. Khối chóp ngũ giác có số cạnh là
Câu 50. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Trang 5Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. ab
a2+ b2 C. √ ab
2
√
a2+ b2
Câu 52. Khối đa diện đều loại {3; 3} có số cạnh
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= 1
e, m = 0 C M = e, m = 1
e. D M = e, m = 1
Câu 54. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1 D xy0 = ey+ 1
Câu 55. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 56. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 57. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 58. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
16 .
Câu 59. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
4 .
Câu 60. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
√ 3
3
2.
Câu 61. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 62. Tìm giới hạn lim2n+ 1
n+ 1
Câu 63. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
3.
Câu 64. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a
√ 2
√
√ 2
Câu 65. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Trang 6Câu 66. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|.
√
√ 10
Câu 67. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ đứng là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 68. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 69. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3√
3
2a3
√ 3
4a3
2a3
3 .
Câu 70. Tính lim 2n
2− 1 3n6+ n4
Câu 71. Tính lim
x→3
x2− 9
x −3
Câu 72. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ ab
a2+ b2 D. √ 1
a2+ b2
Câu 73. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
2x3ln 10.
Câu 74. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 75. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
a
2a
5a
9 .
Câu 76. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 77. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
5
a3√15
3√
3√ 6
3 .
Trang 7Câu 78. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 79 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx B.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
C.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 80. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 81. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
√
1
n+ 1
n .
Câu 82. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 83. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√6
2a3√6
9 .
Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 85. Tính lim 5
n+ 3
Câu 86. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 87. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = 1 + ln x C y0 = ln x − 1 D y0 = x + ln x
Câu 88. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (0; 1) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (−1; 0).
Câu 89. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 90. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 91 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Trang 8A 3 B 2 C 4 D 1.
Câu 92 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 93. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 94. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 95. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 96. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A −1
1
Câu 97. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 98. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
3√ 2
Câu 99. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
B Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
C Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 100. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 101. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 34
Câu 102. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
3
1
2.
Trang 9Câu 103. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 104. Biểu thức nào sau đây không có nghĩa
A. −3
√
√
Câu 105. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
4.
Câu 106. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 107. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
Câu 108. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 6 cạnh, 4 mặt.
Câu 109. [1] Biết log6 √a= 2 thì log6abằng
Câu 110. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 111. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R B. D = R \ {1; 2} C. D = [2; 1] D. D = (−2; 1)
Câu 112. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
a3
√ 3
4a3√ 3
8a3√ 3
9 .
Câu 114. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
C lim
x→af(x)= f (a) D f (x) có giới hạn hữu hạn khi x → a.
Câu 115. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 116. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 117. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Trang 10Câu 118. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 119. Khối đa diện đều loại {5; 3} có số cạnh
Câu 120. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 121. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 123. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2017
2016
4035
Câu 124. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 125. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 126. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 127. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38
Câu 128. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 129. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 130 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
HẾT