Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 12217d] Cho hàm số y = ln 1 x + 1 Trong các khẳng định sau đây, khẳng định nào đúng? A xy′ = −ey − 1 B[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 2. [1] Biết log6 √a= 2 thì log6abằng
Câu 3. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) có giá trị lớn nhất trên K.
Câu 4. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 5. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 5
a3√ 5
a3√ 3
12 .
Câu 7. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 8. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 9. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Hai khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 10. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 11. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
3 .
Câu 12. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 13. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→a + f(x)= lim
x→a − f(x)= a
x→af(x)= f (a)
Trang 2Câu 14. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 15. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 16. Khối đa diện đều loại {3; 3} có số mặt
Câu 17. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√3
a√6
a√6
2 .
Câu 18. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 19 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
C.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx D.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
Câu 20. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 21. [1] Giá trị của biểu thức 9log3 12bằng
Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 23. Tứ diện đều thuộc loại
Câu 24. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
2018.
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 26. Khối đa diện đều loại {4; 3} có số mặt
Câu 27. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
ln 2
2 .
Trang 3Câu 28. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Câu 29. Tính lim n −1
n2+ 2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 31. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 32. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
√ 3
2 e
π
2e
π
Câu 33. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
5.
Câu 34. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = R \ {1} C. D = R \ {0} D. D = (0; +∞)
Câu 35. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
A. 3
Câu 36. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 37. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
3.
Câu 38. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 39. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 40. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Trang 4Câu 41. Cho I = 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 42. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 3a3
√ 3
2 . C V = 6a3 D V = 3a3√
3
Câu 43. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 45 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 46. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 7
√
√
√ 2
Câu 47 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 48. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 49. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 − √2, phần ảo là −
√
3 B Phần thực là √2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2 − 1, phần ảo là −
√ 3
Câu 50. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 51. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 3
√
Câu 52. Khối đa diện đều loại {3; 5} có số cạnh
Câu 53. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Trang 5Câu 54. [4] Xét hàm số f (t)= 9
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 55. Khối đa diện đều loại {4; 3} có số cạnh
Câu 56. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 57. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 1008 C T = 2016 D T = 2016
2017.
Câu 58. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 59. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 60. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 61 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 3, 03 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 62 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx
!0
= f (x)
C.
Z
k f(x)dx= kZ f(x)dx, k là hằng số D.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
Câu 63. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 64. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 65. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 66. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Trang 6Câu 67. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 68. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 69. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
3.
Câu 70. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 71. Tính lim
x→2
x+ 2
x bằng?
Câu 72. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 73. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 74. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 75. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 76. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Câu 77. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 78. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Câu 79. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 1; m = 1
C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1
Câu 80. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 81. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng −∞;1
3
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng 1
3; 1
!
3; 1
!
Trang 7Câu 82. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 83. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 84. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n3− 3n
n+ 1 . C un = 6
5
!n D un = n2− 4n
Câu 85. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
a3
√ 6
a3
√ 6
48 .
Câu 86. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 2
Câu 87. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
8
1
9.
Câu 88. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 89. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
7
3.
Câu 90. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√
√ 3
3 .
Câu 91. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 92. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 93. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 94 Phát biểu nào sau đây là sai?
A lim √1
C lim 1
nk = 0 với k > 1 D lim qn= 1 với |q| > 1
Câu 95. Khối đa diện đều loại {3; 5} có số mặt
Trang 8Câu 96. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 2
e. C T = 4 + 2
e. D T = e + 3
Câu 97. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 98. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (−∞; 1) C. D = R \ {1} D. D = (1; +∞)
Câu 99. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 100. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 101. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 102. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 103. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A.
√
√
√
2 và 3
Câu 104. Khối chóp ngũ giác có số cạnh là
Câu 105. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 9
√
11+ 19
9 . C Pmin = 2
√
11 − 3
3 . D Pmin= 18
√
11 − 29
21 .
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ 1
a2+ b2 C. √ ab
2
√
a2+ b2
Câu 107. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A. 5
√
13
√
√
√ 2
Câu 108. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
5
Câu 109 Hình nào trong các hình sau đây không là khối đa diện?
Trang 9Câu 110. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 111. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 112. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a√3
a√3
√ 3
Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 3
a3√ 2
a3√ 3
4 .
Câu 114. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 115. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên sai D Cả hai câu trên đúng.
Câu 116. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 117. Khối đa diện đều loại {3; 3} có số cạnh
Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 6
3√
3√ 15
3 .
Câu 119. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 120. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 121. Tính limcos n+ sin n
n2+ 1
Câu 122. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Trang 10Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 124. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 125. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 126. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 127. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = (−2; 1) B. D = R C. D = R \ {1; 2} D. D = [2; 1]
Câu 128. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
5a
a
2a
9 .
Câu 129. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
Câu 130. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
HẾT