Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút ti[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.
Câu 2. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A − 1
1
1
e2
Câu 4. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Cả hai câu trên sai C Cả hai câu trên đúng D Chỉ có (II) đúng.
Câu 5. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 6. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 7. [3] Cho hình lập phương ABCD.A0B0C0D0có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C0D) bằng
√
3
a√3
√
√ 3
3 .
Câu 8. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 9. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 10. Khối đa diện đều loại {5; 3} có số mặt
Câu 11. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 3
Câu 12. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Trang 2Câu 13. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 14. [1] Tính lim1 − 2n
3n+ 1 bằng?
A −2
2
1
3.
Câu 15. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
√
1
n+ 1
n .
Câu 16. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 17. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√ 3
Câu 18. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
2 . C V = πa3
√ 3
3 . D V = πa3
√ 6
6 .
Câu 19. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 20. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3√2
a3√3
3√ 3
Câu 21. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 22. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 23. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = (−2; 1) B. D = R C. D = [2; 1] D. D = R \ {1; 2}
Câu 24. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều sai C Chỉ có (I) đúng D Cả hai đều đúng.
Câu 25. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.
Trang 3Câu 26. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a
a
√ 2
3 .
Câu 27. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 1008 C T = 2016
2017. D T = 2016
Câu 28. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
2x ln x. B y0 = 1
0 = 2x ln 2 D y0 = 2x ln x
Câu 29. Khối đa diện đều loại {3; 5} có số cạnh
Câu 30. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 31. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 33. Hàm số nào sau đây không có cực trị
A y = x4− 2x+ 1 B y= x −2
2x+ 1. C y= x +
1
x. D y= x3− 3x
Câu 34. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 35. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
C Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
Câu 36. Tính lim 5
n+ 3
Câu 37. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
9
13
23
100.
Câu 38. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Trang 4C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 39. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 40. Khối đa diện đều loại {3; 5} có số mặt
Câu 41. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 6, 12, 24 D 2, 4, 8.
Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3√ 3
a3
a3
√ 3
9 .
Câu 43. Khối đa diện đều loại {3; 3} có số mặt
Câu 44. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 45. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 46. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 47. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 48. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 49. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 50. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 51. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Trang 5Câu 52. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 2
a3√ 6
a3√ 6
36 .
Câu 53. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 54. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11 − 19
9 . C Pmin = 9
√
11+ 19
9 . D Pmin= 2
√
11 − 3
Câu 55. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 56. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 57. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
2.
Câu 58 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C B.
Z
f(x)dx
!0
= f (x)
C.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số D.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
Câu 59. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 60. [1] Giá trị của biểu thức 9log3 12bằng
Câu 61. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Đường phân giác góc phần tư thứ nhất.
D Trục thực.
Trang 6Câu 62. Mặt phẳng (ABC ) chia khối lăng trụ ABC.A BC thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Hai khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 63. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 65. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 66 Phát biểu nào sau đây là sai?
C lim1
nk = 0
Câu 67. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 68. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
2√e.
Câu 69. Bát diện đều thuộc loại
Câu 70. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 71. Biểu thức nào sau đây không có nghĩa
A. −3
√
√ 2)0 D 0−1
Câu 72. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
4 .
Câu 73. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
√ 6
a
√ 6
a
√ 6
6 .
Câu 74. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
3√
6
a3
√ 6
a3√3
a3√3
4 .
Câu 75. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 76. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Trang 7Câu 77. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 78. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 79. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 80. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 81. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 82 Hình nào trong các hình sau đây không là khối đa diện?
Câu 83. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 84. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 85. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 86. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 87. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.
Câu 88. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 89. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 2 ln 2x
x3ln 10 . D y
2x3ln 10.
Câu 90. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 91. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
3
√ 3
2 .
Trang 8Câu 92. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 93. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 94. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 95. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
3
2
Câu 96. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 97. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
4a3√6
2a3√6
3 .
Câu 98. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Câu 99. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
3√
3
2a3
√ 3
5a3
√ 3
a3
√ 3
2 .
Câu 100. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 101. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Câu 102. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 0 C M = 1
e, m = 0 D M = e, m = 1
Câu 103. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 104. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√6
a3√3
a3√6
8 .
Trang 9Câu 105. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = 6a3 C V = 3a3
√ 3
2 . D V = a3
√ 3
2 .
Câu 106. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 107. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 108. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 109. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 110. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên (n − 1) lần C Không thay đổi D Tăng lên n lần.
Câu 111. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm
Ađến đường thẳng BD0bằng
√
a2+ b2
√
a2+ b2+ c2 B. abc
√
b2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 112. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 113. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 3
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 115. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 116. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 117. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 118. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Trang 10Câu 119. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 120 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
dx = x + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 121. Hàm số f có nguyên hàm trên K nếu
Câu 122. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 123. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 124. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 125. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 126. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 127. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 128. [4] Xét hàm số f (t) = 9t
9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S
Câu 129. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 5
a3√ 6
a3√ 15
3 .
Câu 130. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m > −5
HẾT