Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hàm số f (x) = x ln2 x Giá trị f ′(e) bằng A 2e B 3 C 2e + 1 D 2 e Câu 2 [2 c] Giá trị nhỏ nhất củ[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
e.
Câu 2. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
1
e2
Câu 3. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 4. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2017 C T = 2016 D T = 2016
2017.
Câu 5. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ b2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 6 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Cả ba đáp án trên.
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 7. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 8. Tính lim
x→ +∞
x −2
x+ 3
Câu 9. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 10. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 11. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 12. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Trang 2Câu 13. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 14. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√ 2
Câu 15. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tam giác.
D Hai hình chóp tứ giác.
Câu 16. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
√ 2
Câu 17. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A.
√
√
Câu 18. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = 1 − 2n
5n+ n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 2
5n − 3n2
Câu 19. [1] Giá trị của biểu thức 9log3 12bằng
Câu 20. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2016
Câu 21. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 22. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên đúng C Chỉ có (I) đúng D Cả hai câu trên sai.
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 24. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Trang 3Câu 25. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
13
9
23
100.
Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. ab
2
√
a2+ b2 D. √ ab
a2+ b2
Câu 27. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 28 Hình nào trong các hình sau đây không là khối đa diện?
Câu 29. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 30. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
5.
Câu 31. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 32 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ
B aαbα = (ab)α
α
aβ = aα D aαβ = (aα
)β
Câu 33. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3
a3√3
3 .
Câu 34. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
3√ 3
a3√3
2a3√3
3 .
Câu 36. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 01)3− 1 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = 100.(1, 01)3
3 triệu.
Câu 37. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Trang 4Câu 38. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Trục ảo.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Đường phân giác góc phần tư thứ nhất.
Câu 39. Thể tích của khối lập phương có cạnh bằng a√2
A 2a3
√
3√ 2
2
Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
a3√ 3
a3√ 6
48 .
Câu 41. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
8
1
1
3.
Câu 42. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 43. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ 1
a2+ b2 D. √ ab
a2+ b2
Câu 45. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 46. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 47. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 48. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 49. Tìm giới hạn lim2n+ 1
n+ 1
Câu 50. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Trang 5Câu 52. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng
1
Câu 53. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 54. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Một tứ diện đều và bốn hình chóp tam giác đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 55. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.
Câu 56. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 57. Khối đa diện đều loại {3; 4} có số cạnh
Câu 58. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
2x ln x. B y
0 = 2x ln x C y0 = 2x ln 2 D y0 = 1
ln 2.
Câu 59 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 60. Khối đa diện đều loại {5; 3} có số mặt
Câu 61. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
4 .
Câu 62. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 63. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 6
6 . C V = πa3
√ 3
3 . D V = πa3
√ 3
6 .
Câu 64. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e2− 2; m = e−2+ 2
C M = e−2+ 1; m = 1 D M = e−2+ 2; m = 1
Câu 65. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√ 17
√ 34
Trang 6Câu 66. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
Câu 67. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1
Câu 68. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 69. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. D V = 3S h
Câu 70. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 1
ln 10. C f
0 (0)= 10 D f0(0)= 1
Câu 71. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 72. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 73. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 74. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 75. Khối đa diện đều loại {5; 3} có số cạnh
Câu 76. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 77. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 78. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 79. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 80. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 81. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
Trang 7C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞).
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 82. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 83. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 84 Mệnh đề nào sau đây sai?
A.
Z
f(x)dx
!0
= f (x)
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 6
a3√ 5
a3√ 15
3 .
Câu 86. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 87. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 88. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 89. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 90. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 6
a√3
2 .
Câu 91. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 92. Khối đa diện đều loại {3; 4} có số mặt
Câu 93 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 94. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
2 .
Trang 8Câu 95. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 96. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A. 2
2
Câu 97. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 2
12 .
Câu 98. Khối đa diện đều loại {4; 3} có số cạnh
Câu 99. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 3
Câu 100. Khẳng định nào sau đây đúng?
A Hình lăng trụ tứ giác đều là hình lập phương.
B Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng là hình lăng trụ đều.
Câu 101. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
4a3√3
5a3√3
a3√3
2 .
Câu 102 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 103. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
Câu 104. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 105. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
Câu 106. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
4a3√3
a3
2a3√3
3 .
Trang 9Câu 107. Tính lim n −1
n2+ 2
Câu 108. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 109. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 110. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
√ 57
a
√ 57
a
√ 57
19 .
Câu 111. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 112. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B F(x)= G(x) trên khoảng (a; b)
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 113. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 114. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Câu 115 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 116. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 117. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.
Câu 118. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Trang 10Câu 119. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
2a
8a
5a
9 .
Câu 120. Biểu thức nào sau đây không có nghĩa
A. −3
√
√ 2)0
Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 122. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 123. [1] Biết log6 √a= 2 thì log6abằng
Câu 124. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 125. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 126. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 127. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3
a3√3
8 .
Câu 128. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 129. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 130. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
HẾT