1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 5 (1)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Năm xuất bản 2019
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Đạo hàm của làm số y = log x là A y′ = 1 x ln 10 B 1 10 ln x C y′ = 1 x D y′ = ln 10 x Câu 2 Tính giới[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B.

1

0 = 1

0 = ln 10

x .

Câu 2. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 3. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = n2− 4n C un = −2

3

!n D un = 6

5

!n

Câu 4. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 5. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 6. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 8. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 9. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

3

1

2.

Câu 10. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 11. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 12. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Đường phân giác góc phần tư thứ nhất.

B Trục thực.

C Trục ảo.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Câu 13. Khối lập phương thuộc loại

Trang 2

Câu 14 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.

Câu 15. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A a

√ 6

a√6

a√6

3 .

Câu 16. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 2

a3√ 6

36 .

Câu 17. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 18. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

a√57

19 .

Câu 19. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 20. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 21. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

Câu 22 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D.

Z

u0(x)

u(x)dx= log |u(x)| + C

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

15

3√

3√ 6

a3

√ 5

3 .

Câu 24. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

9

13

23

100.

Câu 25. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Trang 3

Câu 26. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

Câu 27. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 28. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2;+∞

!

2

!

2;+∞

!

Câu 29. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3

a3√3

3 .

Câu 30. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 31. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 32. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 35. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0;+∞)

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).

Câu 36. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 37 Hình nào trong các hình sau đây không là khối đa diện?

Câu 38. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Trang 4

Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 40. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≥ 0 C m ≤ 0 D m > −5

4.

Câu 41 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 42. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 43. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38

Câu 44. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 3ac

3b+ 2ac

3b+ 2ac

c+ 3 .

Câu 45. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 46. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 47. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

24 .

Câu 48. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016

2017. C T = 2016 D T = 2017

Câu 49. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

2x3ln 10. D y

0 = 1 − 2 log 2x

x3

Câu 50. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 51. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Trang 5

Câu 52. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 53. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= 1

log2a. C log2a= 1

loga2. D log2a= − loga2

Câu 54. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√ 6

4a3

√ 6

a3

√ 6

3 .

Câu 55. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

n+ 1

1

n.

Câu 56. Khối đa diện đều loại {3; 3} có số mặt

Câu 57. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

13 .

Câu 58. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

3√

3

a3

√ 3

2a3

√ 3

4a3

√ 3

3 .

Câu 59 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 60. Xác định phần ảo của số phức z= (√2+ 3i)2

A −6

√ 2

Câu 61. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 62. Khối đa diện đều loại {4; 3} có số cạnh

Câu 63. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 64. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 65. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 66. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√2

a3√2

a3√2

2 .

Trang 6

Câu 67. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 7

Câu 68. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 69. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 70. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 2

a3√3

6 .

Câu 71. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

Câu 72. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 73. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối 12 mặt đều D Khối bát diện đều.

Câu 74. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

3.

Câu 75. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 76. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 77. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 5

a3√ 5

a3√ 5

12 .

Câu 78. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

3√

3

4a3√ 3

a3

a3

3 .

Câu 80. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x4− 2x+ 1 C y= x3− 3x D y= x −2

2x+ 1.

Trang 7

Câu 81. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng

A. a

6

a

√ 6

a√3

a

√ 6

3 .

Câu 82. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = R \ {1} C. D = (0; +∞) D. D = R

Câu 83 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim √1

Câu 84. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

a3√3

a3√3

2a3√6

9 .

Câu 85. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2√e.

Câu 86. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 5

Câu 87. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 88. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng 2n+1.

Câu 89. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tứ giác.

Câu 90. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 91. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 92. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 93. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Trang 8

Câu 94. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 95. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 96. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

a√3

√ 3

2 .

Câu 97. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 98. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 99. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

8

1

8

3.

Câu 100. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 101. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1+ 2e

4 − 2e. D m= 1 − 2e

4e+ 2.

Câu 102. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1

2x ln x. D y

0 = 1

ln 2.

Câu 103. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 104. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 2

Câu 105. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Câu 106. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = −ey

− 1

Câu 107. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 108. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

3.

Trang 9

Câu 109 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

B Cả ba đáp án trên.

C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

Câu 110. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 111. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 112. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 113. Tính lim

x→3

x2− 9

x −3

Câu 114. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 115. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 116. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 117. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

6

a3√2

a3√3

a3√3

48 .

Câu 118. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

2a

a

a

3.

Câu 119. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 120. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±3 B m= ±√2 C m= ±√3 D m= ±1

Câu 121. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 122. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Trang 10

Câu 123. Khối đa diện đều loại {3; 5} có số cạnh

Câu 124. Khẳng định nào sau đây đúng?

A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

Câu 125. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 126. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 127. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 128. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) có giá trị lớn nhất trên K.

Câu 129 Phát biểu nào sau đây là sai?

A lim1

nk = 0

Câu 130. Bát diện đều thuộc loại

HẾT

Ngày đăng: 01/04/2023, 06:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN