TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
8a
5a
a
9.
Câu 2. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D lim
x→a + f(x)= lim
x→a − f(x)= a
Câu 3. Thể tích của khối lập phương có cạnh bằng a√2
3√ 2
2
Câu 4 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B.
Z
f(x)dx
!0
= f (x)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
Câu 5. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 6. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 7. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 8. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 9. Khối đa diện đều loại {3; 4} có số cạnh
Câu 10. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√3
a3√3
a3√6
48 .
Trang 2Câu 11. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 12. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 13. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 14. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√15
a3√5
a3
3 .
Câu 15. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
4.
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 17. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 18. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Đường phân giác góc phần tư thứ nhất.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục thực.
Câu 19. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2
− 2; m= 1 B M = e−2+ 2; m = 1
C M = e2− 2; m = e−2+ 2 D M = e−2+ 1; m = 1
Câu 20. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
24.
Câu 21. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√3 C m= ±√2 D m= ±1
Câu 22. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
√ 3
2 . D P= −1 − i
√ 3
Câu 23. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Trang 3Câu 24. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x
lần lượt là
A 2 và 2
√
√
√
2 và 3
Câu 25. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị lớn nhất trên K B f (x) liên tục trên K.
Câu 26. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3
√ 2
a3
√ 2
a3
√ 2
6 .
Câu 27. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 28. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 29. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
1
√ 3
2 .
Câu 30. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 31. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 32. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 33. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là 1 −
√ 3
Câu 34. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 35. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 36. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x) − g(x)]= a − b D lim
x→ +∞[ f (x)+ g(x)] = a + b
Câu 37. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 1
2x ln x. C y
0 = 2x ln 2 D y0 = 1
ln 2.
Câu 38. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp tứ giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Hai khối chóp tam giác.
Trang 4Câu 39. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 40. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (−∞; 1) C. D = (1; +∞) D. D = R
Câu 41. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 42. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 43. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 44. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1
2.
Câu 45. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 46. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 5
a3√15
a3√6
3 .
Câu 48. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 1) B A0(−3; −3; 3) C A0(−3; 3; 3) D A0(−3; −3; −3)
Câu 49 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 50 Hình nào trong các hình sau đây không là khối đa diện?
Câu 51. Tính lim n −1
n2+ 2
Câu 52. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 1
e. C M = e, m = 0 D M = 1
e, m = 0
Trang 5Câu 54. Tìm m để hàm số y= x3
− 3mx2+ 3m2
có 2 điểm cực trị
Câu 55. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 56. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 57. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 58. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 59. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
a3
√ 3
3
3 .
Câu 60. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 61. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 62. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 63 Phát biểu nào sau đây là sai?
A lim √1
C lim 1
nk = 0 với k > 1 D lim qn= 1 với |q| > 1
Câu 64. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
5
#
3
#
"
−2
3;+∞
!
Câu 65. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 66. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 67. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 68. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = 4 + 2
e. C T = e + 1 D T = e + 3
Câu 69. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Trang 6Câu 70. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 71. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
2a3
√ 3
3 .
Câu 73 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 74. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 75. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 76 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B Cả ba đáp án trên.
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 77. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√
√ 2
2 .
Câu 78. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 79. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 80. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. B V = 1
3S h. C V = S h D V = 3S h
Câu 81. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số đỉnh của khối chóp bằng 2n+ 1
Trang 7Câu 82. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A a
√
√ 2
a√2
√ 2
Câu 83. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 84. Tính lim 5
n+ 3
Câu 85. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 86. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
2 D 3+ 4√2
Câu 87. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi.
Câu 88. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
B Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
D Nếu f (x)= g(x) + 1, ∀x ∈ R thì
Z
f0(x)dx=
Z
g0(x)dx
Câu 89 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 90. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 91. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
C. x −2
2 = y+ 2
2 = z −3
x −2
2 = y −2
3 = z −3
4 .
Câu 92. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= loga2 C log2a= 1
loga2. D log2a= 1
log2a.
Trang 8Câu 93. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 3
a3
√ 3
2a3
√ 6
9 .
Câu 94. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 95. Tìm giới hạn lim2n+ 1
n+ 1
Câu 96. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.
Câu 97. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 98. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 99. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 100. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 101. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = n3− 3n
n+ 1 . C un = n2− 4n D un = −2
3
!n
Câu 102. Khối đa diện đều loại {5; 3} có số cạnh
Câu 103. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 3
√
√
Câu 104. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 105. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 106. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
Câu 107. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 108. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Trang 9Câu 109. [3-1122h] Cho hình lăng trụ ABC.A BC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
36 .
Câu 110. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
a√3
a
2.
Câu 111. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
9
23
5
16.
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 113. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 114. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 115. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 116. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 117. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
a3√3
4a3√3
5a3√3
3 .
Câu 118. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 119. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 120. Bát diện đều thuộc loại
Câu 121. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
9
2
1
5.
Trang 10Câu 122. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e 4e+ 2.
Câu 123. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R B. D = (−2; 1) C. D = R \ {1; 2} D. D = [2; 1]
Câu 124. [4-1213d] Cho hai hàm số y= x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 125. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 6
6 . C V = πa3
√ 3
3 . D V = πa3
√ 3
2 .
Câu 126. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 127. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1
Câu 128. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 129. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
Câu 130. Thập nhị diện đều (12 mặt đều) thuộc loại
HẾT