TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A −3 B 3 C +∞ D 6 Câu 2 [2] Tìm[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính lim
x→3
x2− 9
x −3
Câu 2. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 3. [2] Cho hàm số y= log3(3x + x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 4. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 5. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
9
13
23
100.
Câu 6. Tìm giới hạn lim2n+ 1
n+ 1
Câu 7. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
2; 3
!
Câu 8. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 18 lần C Tăng gấp 27 lần D Tăng gấp 9 lần.
Câu 10. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e−2− 2; m= 1
C M = e2− 2; m = e−2+ 2 D M = e−2+ 2; m = 1
Câu 11. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
3.
Câu 12. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 13. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 14. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
C Phần thực là √2, phần ảo là 1 −
√
3 D Phần thực là 1 − √2, phần ảo là −
√ 3
Trang 2Câu 15. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Câu 16. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 17. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 18. Tính lim 2n
2− 1 3n6+ n4
Câu 19. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
4a3√3
a3
2a3√3
3 .
Câu 20. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 21 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C.
Z
f(x)dx
!0
= f (x)
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 22. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 23. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 24. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 6
Câu 25. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) trên khoảng (a; b)
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 26. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
Trang 3(III) lim qn= +∞ nếu |q| > 1.
Câu 27. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
24.
Câu 28. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 29. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 30. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 31. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 32. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 33. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 34. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 35. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 36. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 37. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1 2e.
Câu 39. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Trang 4Câu 40. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 41 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 42 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ
α
aβ = aα C aαβ = (aα
)β D aαbα = (ab)α
Câu 43. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 44. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 45. Khối đa diện đều loại {4; 3} có số cạnh
Câu 46. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a√2
a
2a
3 .
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 48. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x
2 = y −2
3 = z −3
−1 .
C. x
1 = y
1 = z −1
x −2
2 = y+ 2
2 = z −3
2 .
Câu 49. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 50. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. ab
a2+ b2 D. √ 1
a2+ b2
Câu 51. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 52. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
Trang 5Câu 53. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 54. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 55. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
4a3
√ 3
2a3
√ 3
5a3
√ 3
3 .
Câu 56. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 57. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3√2
a3√3
a3√3
24 .
Câu 58. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối 20 mặt đều D Khối bát diện đều.
Câu 59. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 60. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 61. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 62. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
Câu 63. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
√ 2
√
√ 2
2 .
Câu 64. Khối đa diện đều loại {3; 3} có số cạnh
Câu 65. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 23
1728
1079
1637
4913.
Câu 66. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 67. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
C f (x) có giới hạn hữu hạn khi x → a D lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 68. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Trang 6Câu 69. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 70. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 70, 128 triệu đồng C 3, 5 triệu đồng D 50, 7 triệu đồng.
Câu 71. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 72. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 73. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 74. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 75. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 76. Tính lim 5
n+ 3
Câu 77. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 78. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 79. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
Câu 80. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 0 C M = e, m = 1 D M = 1
e, m = 0
Câu 81 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 82 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 7(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 83. Dãy số nào sau đây có giới hạn khác 0?
A. 1
sin n
1
√
n+ 1
n .
Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 85. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 86. Khẳng định nào sau đây đúng?
A Hình lăng trụ tứ giác đều là hình lập phương.
B Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng là hình lăng trụ đều.
Câu 87. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 88. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 89. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2+ n + 1
(n+ 1)2
Câu 90 Phát biểu nào sau đây là sai?
n = 0
C lim 1
Câu 91. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 92. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 93. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
√ 3
Trang 8Câu 94. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
4.
Câu 95. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Hai hình chóp tam giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
3√ 2
a3
√ 2
a3
√ 3
6 .
Câu 97. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số cạnh của khối chóp bằng 2n.
D Số mặt của khối chóp bằng 2n+1.
Câu 98. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Câu 99 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 100. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 102. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 103. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 104. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
6 .
Trang 9Câu 105. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 106. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
A m > −5
5
4 < m < 0 C m ≥ 0 D m ≤ 0.
Câu 107 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.
Câu 108. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng −∞;1
3
!
C Hàm số đồng biến trên khoảng 1
3; 1
! D Hàm số nghịch biến trên khoảng 1
3; 1
!
Câu 109. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 110. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 6
6 . C V = πa3
√ 3
2 . D V = πa3
√ 3
6 .
Câu 111. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 112. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 113. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 114. Khối đa diện đều loại {5; 3} có số cạnh
Câu 115. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
2017
4035
2018.
Câu 116. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 117. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√3
a3√5
a3√5
6 .
Trang 10Câu 119. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 120. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
3.
Câu 121. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 122. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.
Câu 123. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
Câu 124. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 125. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
A. 3a
Câu 126. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x3− 3x. C y= x +
1
x. D y= x4− 2x+ 1
Câu 127 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx B.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
C.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
Câu 128. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 129 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số B.
Z
f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Câu 130. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
HẾT