1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 1 (517)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 1 (517)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 151,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = x3 − 2x2 + x + 1 Mệnh đề nào dưới đây đúng?[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng 1

3; 1

!

3

!

Câu 2. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

15

a3√ 6

a3√ 5

3√ 6

Câu 3. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 4. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

Câu 5. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 3

2 . C V = πa3

√ 3

6 . D V = πa3

√ 6

6 .

Câu 6. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

2√e.

Câu 7. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 8. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị

P= a + b + c + d bằng?

Câu 9. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 10. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 11. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

6

a3√2

a3√3

a3√3

48 .

Trang 2

Câu 13. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

3

√ 3

12.

Câu 14. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 15. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 16. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 17. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 18 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 19. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24

Câu 20. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Câu 21. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 23. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 24. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 25. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x) − g(x)]= a − b

Trang 3

Câu 26. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 27. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 28 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C.

Z

f(x)dx

!0

= f (x)

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 29. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 30. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 31. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.

Câu 32. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B y

0 = ln 10

1

0 = 1

x.

Câu 33. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 34. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 35. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = log1 x B y = logaxtrong đó a= √3 − 2

C y = log√

4 x

Câu 36. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

Câu 37. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 38. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 39. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Trang 4

Câu 40. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

a√2

√ 2

Câu 41. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 42. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√2

a3√3

3√ 3

Câu 44. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 45. Khối đa diện đều loại {3; 5} có số cạnh

Câu 46. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 47. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 48. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√2

a3√2

a3√2

2 .

Câu 49. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 50. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 51. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 52. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 53. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Hai hình chóp tứ giác.

D Hai hình chóp tam giác.

Trang 5

Câu 54. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 55. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 56. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. a

38

3a

3a√58

3a√38

29 .

Câu 57. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2017

2018.

Câu 58. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

Câu 59. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 60. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 2

a3

√ 3

4 .

Câu 61. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.

Câu 62. Khối đa diện đều loại {4; 3} có số mặt

Câu 63. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

e

!n

3

!n

3

!n

Câu 64. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 65. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 66 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Trang 6

Câu 67. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 12)3− 1 triệu.

C m = 100.1, 03

(1, 01)3− 1 triệu.

Câu 68. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 69. Tính lim

x→ +∞

x −2

x+ 3

Câu 70. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 71. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 72. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 73. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là −

√ 3

Câu 74. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.

Câu 75. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 76. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 77. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 78. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 79. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Trang 7

Câu 80. Thể tích của khối lập phương có cạnh bằng a

√ 2

A. 2a

3√

2

3√

2

Câu 81. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 82. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 83. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 84. Khối chóp ngũ giác có số cạnh là

Câu 85. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 86. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 87. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y −2

3 = z −3

x

1 = y

1 = z −1

1 .

C. x

2 = y −2

3 = z −3

x −2

2 = y+ 2

2 = z −3

2 .

Câu 88. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Tăng lên (n − 1) lần C Không thay đổi D Giảm đi n lần.

Câu 89. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 90. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 2

a3√ 3

a3√ 3

12 .

Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√3

2a3√3

3 .

Câu 92. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 93. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Trang 8

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3√ 3

a3√3

a3

3 .

Câu 95. Bát diện đều thuộc loại

Câu 96. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 97. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 98. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 99. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

Câu 100. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

8

1

8

9.

Câu 101. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 102. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

2a3√ 3

a3

√ 3

5a3√ 3

3 .

Câu 103 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Trang 9

Câu 104. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 13

Câu 105. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 106. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1079

23

1637

1728

4913.

Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√ 3

a3√ 2

2 .

Câu 108. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 109. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A.

√ 3

Câu 110. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

Câu 111. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 112. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

3√

3√ 6

4a3

√ 6

3 .

Câu 113. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 114 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx D.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

Câu 115. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Trang 10

Câu 116. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 117. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

√ 6

a

√ 6

a

√ 6

2 .

Câu 118. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 119. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

2 .

Câu 120. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 121. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

2.

Câu 122. [1] Giá trị của biểu thức 9log3 12bằng

Câu 123. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Câu 124. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ 1

2

a2+ b2 D. √ ab

a2+ b2

Câu 125. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 126. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 127. Tính lim

x→2

x+ 2

x bằng?

Câu 128. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. 1

2;+∞

!

2;+∞

!

2

!

2

!

Câu 129. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

Câu 130. Khối đa diện đều loại {3; 3} có số đỉnh

HẾT

Ngày đăng: 31/03/2023, 20:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN