TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Hình nào trong các hình sau đây không là khối đa diện? A H[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1 Hình nào trong các hình sau đây không là khối đa diện?
Câu 2. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 3. Cho
Z 1
0
xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 4. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 5. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
2.
Câu 6 Phát biểu nào sau đây là sai?
nk = 0
n = 0
Câu 7. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 8. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 9. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
√
√
√
2 và 3
Câu 10. Khối đa diện đều loại {3; 4} có số mặt
Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
8a3√3
8a3√3
4a3√3
9 .
Câu 12. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
a
√ 3
√
√ 3
2 .
Câu 13. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√ 2
√
√ 2
2 .
Trang 2Câu 14. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 15. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 16. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 B m < 0 ∨ m= 4 C m < 0 ∨ m > 4 D m ≤ 0.
Câu 17. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 3
6 . C V = πa3
√ 6
6 . D V = πa3
√ 3
2 .
Câu 18. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 19 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 20. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
3S h.
Câu 21. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 22. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 23. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp đôi B Tăng gấp 8 lần C Tăng gấp 4 lần D Tăng gấp 6 lần.
Câu 24. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 25. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 26. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 27 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z k f(x)dx= kZ f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
f(x)dx
!0
= f (x)
Trang 3Câu 28. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là 1 − √2, phần ảo là −
√
3 D Phần thực là √2 − 1, phần ảo là
√ 3
Câu 29. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logaxtrong đó a= √3 − 2 B y = log√
2x
4 x
Câu 30. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 31. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 32. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3
√ 2
a3
√ 2
a3
√ 2
4 .
Câu 33. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 34. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 35. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 36. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 37. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 38. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Cả hai đều đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.
Câu 39. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 40. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
2e
π
√ 3
2 e
π
Câu 41. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.
Trang 4Câu 42. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
5a
8a
2a
9 .
Câu 43. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 44. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 45. Tính lim
x→3
x2− 9
x −3
Câu 46 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαβ = (aα
)β B aαbα = (ab)α
α
aβ = aα D aα+β = aα.aβ
Câu 47. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
a3√ 3
5a3√ 3
4a3√ 3
3 .
Câu 48. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 49. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 50. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
D.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 51. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 52 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 2, 22 triệu đồng C 2, 20 triệu đồng D 3, 03 triệu đồng.
Câu 53. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
Trang 5C Hai khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 54. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 55. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 56. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 57. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 58. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 59. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
3
#
"
−2
3;+∞
!
5
#
Câu 60. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Một tứ diện đều và bốn hình chóp tam giác đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Năm tứ diện đều.
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 62. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 63. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 64. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)
Câu 65. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
3 C V = a3
√ 3
2 . D V = 3a3
√ 3
2 .
Trang 6Câu 66. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 67. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 68. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 69. Hàm số y= x + 1
x có giá trị cực đại là
Câu 70. [1] Đạo hàm của làm số y = log x là
0 = 1
0 = ln 10
0 = 1
xln 10.
Câu 71. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 72. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 73. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 74. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = ey
− 1
Câu 75. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
36 .
Câu 76. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 77. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 78. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 79. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 80. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 81. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Trang 7Câu 82. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 83. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 84. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 85. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 23
5
9
13
100.
Câu 86. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 87. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 88. Khối đa diện đều loại {5; 3} có số mặt
Câu 89. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 90. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 91. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 92. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
A −3 − 4
√
√ 2
Câu 93. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√ 7
11a2
a2√ 5
16 .
Câu 94. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 95. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
a
√ 57
2a√57
19 .
Câu 96. Khối đa diện đều loại {4; 3} có số đỉnh
Trang 8Câu 97. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
2 .
Câu 98. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 99. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x −2
2 = y −2
3 = z −3
4 .
C. x
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
Câu 100. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 101. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 102. Tính lim 2n
2− 1 3n6+ n4
Câu 103. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
2.
Câu 104. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
a3√3
3√ 3
Câu 105. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 106. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 107. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là
Câu 108. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Trang 9Câu 109. [4-1212d] Cho hai hàm số y= x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 110. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 3
a3
3
Câu 112. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 3n
n2 D un = n2− 2
5n − 3n2
Câu 113. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A. 1
1
3.
Câu 114. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 115. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Tăng lên n lần C Giảm đi n lần D Không thay đổi.
Câu 116. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞[ f (x)g(x)]= ab
C lim
x→ +∞
f(x)
g(x) = a
Câu 117. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 118. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
6 .
Câu 119. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 120. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3
Câu 121. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Trang 10Câu 122. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 123. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
B Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 124. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
√ 3
1
3
2.
Câu 125. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
5.
Câu 126. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 127. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục ảo.
B Trục thực.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Đường phân giác góc phần tư thứ nhất.
Câu 128. Bát diện đều thuộc loại
Câu 129. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 130. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a√57
√
√ 57
19 .
HẾT