1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 5 (714)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 5 (714)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 154,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 1131d] Tính lim ( 1 1 + 1 1 + 2 + + 1 1 + 2 + + n ) A 3[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

2.

Câu 2. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 3. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 4. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 5. Khối đa diện đều loại {5; 3} có số cạnh

Câu 6. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2√a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 7. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 8. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 9. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 10. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 11. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

a√3

2a√3

2 .

Câu 12. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

2.

Câu 13. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Trang 2

Câu 14. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

3

24.

Câu 15. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

a√38

3a√38

3a√58

29 .

Câu 16. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

√ 6

a

√ 6

a

√ 6

6 .

Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

a3√3

8a3√3

4a3√3

9 .

Câu 18. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√6

a√3

2 .

Câu 19 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

Câu 20. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 1

e. C M = e, m = 0 D M = 1

e, m = 0

Câu 21. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 22. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 27 lần B Tăng gấp 3 lần C Tăng gấp 9 lần D Tăng gấp 18 lần.

Câu 23. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 24. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 25. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Trang 3

Câu 26. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

11a2

a2√ 7

a2√ 2

4 .

Câu 27. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

√ 5

Câu 28. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 29 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 30. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 31. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên n lần C Giảm đi n lần D Tăng lên (n − 1) lần.

Câu 32. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 33. Dãy số nào có giới hạn bằng 0?

A un= n2

− 4n B un = −2

3

!n C un = n3− 3n

n+ 1 . D un = 6

5

!n

Câu 34. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 35. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3

− mx2+ 3x + 4 đồng biến trên R

Câu 36. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e +2

e. B T = e + 1 C T = 4 + 2

e. D T = e + 3

Câu 37. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

Câu 38. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

Trang 4

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

2a3√3

a3√3

3√ 3

Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 41. Khối đa diện đều loại {3; 4} có số cạnh

Câu 42. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 43. Tính lim

x→1

x3− 1

x −1

Câu 44. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

4 .

Câu 45. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Trục ảo.

C Đường phân giác góc phần tư thứ nhất.

D Trục thực.

Câu 46. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 47. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 48. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 49. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 50. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 51. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√6

a3√6

a3√3

24 .

Câu 52. Khối chóp ngũ giác có số cạnh là

Câu 53. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Trang 5

Câu 54. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = 100.1, 03

3 triệu.

C m = 100.(1, 01)3

(1, 01)3− 1 triệu.

Câu 55. Khối đa diện đều loại {3; 3} có số cạnh

Câu 56. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 57. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4e+ 2. C m=

1+ 2e 4e+ 2. D m=

1 − 2e

4 − 2e.

Câu 58. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 59. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 60. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

4035

2016

2017.

Câu 61 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α

C aα+β = aα.aβ

α

aβ = aα

Câu 62. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

3√

3√ 6

4a3

√ 6

3 .

Câu 63. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

9

3

4.

Câu 64. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√2

3√

3√ 3

2 .

Câu 66. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

9

5

13

100.

Trang 6

Câu 67. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 68. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là 4 B Phần thực là −1, phần ảo là −4.

C Phần thực là 4, phần ảo là −1 D Phần thực là 4, phần ảo là 1.

Câu 69. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là √2, phần ảo là 1 −

3 B Phần thực là 1 − √2, phần ảo là −

√ 3

C Phần thực là √2 − 1, phần ảo là

3 D Phần thực là √2 − 1, phần ảo là −

√ 3

Câu 70. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 72. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 73. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 74. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√ 3

4a3√ 3

a3

6 .

Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 76. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 15

3√

3√ 6

3 .

Câu 77. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Trang 7

Câu 78. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

Câu 79. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 80. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 81. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 82. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 83. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.

Câu 84. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 85. Tìm giới hạn lim2n+ 1

n+ 1

Câu 86. Thể tích của khối lập phương có cạnh bằng a√2

A. 2a

3√

2

2 D V = 2a3

Câu 87. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Năm tứ diện đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 88. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 89. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 90. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 91. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Trang 8

Câu 92. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1 B xy0 = ey

− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1

Câu 93. Khối lập phương thuộc loại

Câu 94. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 95. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 96. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 97. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 98. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 6

6 . C V = πa3

√ 3

6 . D V = πa3

√ 3

3 .

Câu 99. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x

Câu 100. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 101 Hình nào trong các hình sau đây không là khối đa diện?

A Hình tam giác B Hình lập phương C Hình lăng trụ D Hình chóp.

Câu 102. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 103. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3

√ 3

a3

√ 3

3√ 3

Câu 104. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 2

5n − 3n2 D un = 1 − 2n

5n+ n2

Câu 105. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 106. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

12 .

Trang 9

Câu 107. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 108. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 109. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 110. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 111. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 112. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 113. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

2a

8a

a

9.

Câu 114. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y −2

3 = z −3

x −2

2 = y+ 2

2 = z −3

2 .

C. x

2 = y −2

3 = z −3

x

1 = y

1 = z −1

1 .

Câu 115. Tính lim

x→2

x+ 2

x bằng?

Câu 116. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 117. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 118. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = R \ {1; 2} B. D = (−2; 1) C. D = R D. D = [2; 1]

Câu 119 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

dx = x + C, C là hằng số B.

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z 0dx = C, C là hằng số

Trang 10

Câu 120. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 121. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

2e

π

√ 3

2 e

π

6

Câu 122. Khối đa diện đều loại {4; 3} có số cạnh

Câu 123. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 124. Khối đa diện đều loại {3; 4} có số mặt

Câu 125. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 126. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 128. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 129. Điểm cực đại của đồ thị hàm số y = 2x3

− 3x2− 2 là

Câu 130. Cho hai đường thẳng d và d0cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

HẾT

Ngày đăng: 31/03/2023, 16:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN