TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2D1 3] Tìm giá trị của tham số m để hàm số y = − 1 3 x3 −[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = 4 B m= −3, m = 4 C −3 ≤ m ≤ 4 D m= −3
Câu 2. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 3. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 4. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A a3
√
3√ 3
2a3√ 3
a3√ 3
3 .
Câu 5. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3
a3√3
a3√3
2 .
Câu 6. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x −2
2 = y −2
3 = z −3
4 .
C. x
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
Câu 7. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 9. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
5
#
3
#
"
−2
3;+∞
!
Câu 10. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 11. [1] Tập xác định của hàm số y= 2x−1
là
A. D = R \ {1} B. D = (0; +∞) C. D = R \ {0} D. D = R
Trang 2Câu 12. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 13. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
B Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
D Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
Câu 14 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 B.
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
C.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 15. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 16. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 17. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 18. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 19. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên sai C Cả hai câu trên đúng D Chỉ có (I) đúng.
Câu 20. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. B V = 1
3S h. C V = S h D V = 3S h
Câu 21. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 22. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Trang 3Câu 23. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 24. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
a√3
√ 3
Câu 25. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2
√ 7
a2
√ 5
a2
√ 2
4 .
Câu 26. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= 1
loga2. C log2a= loga2 D log2a= − loga2
Câu 27 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 28. [1] Tính lim1 − 2n
3n+ 1 bằng?
A −2
2
1
3.
Câu 29. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 30. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 31. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 32. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 33. Biểu thức nào sau đây không có nghĩa
A. −3
√
√ 2)0 D 0−1
Câu 34. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 35. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
3
2
Trang 4Câu 36. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
3.
Câu 37. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 38. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 39. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±√3 C m= ±3 D m= ±1
Câu 40. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 41. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A −3 − 4
√
√
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ 1
2√a2+ b2 D. √ ab
a2+ b2
Câu 43. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 44. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 45. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
D.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
Câu 46 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Trang 5Câu 48. [2] Tập xác định của hàm số y= (x − 1) là
A. D = R \ {1} B. D = R C. D = (−∞; 1) D. D = (1; +∞)
Câu 49. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. ab
a2+ b2 D. √ ab
a2+ b2
Câu 50. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 51. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 52. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
Câu 53. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 54. Khối đa diện đều loại {4; 3} có số mặt
Câu 55. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
3√
3
4a3√3
a3√3
8a3√3
3 .
Câu 56. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 57. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 58. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
9
Câu 59. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 1
2
Câu 60. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 61. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
√
√ 6
2 .
Câu 62. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
1
1
2
5.
Câu 63. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Trang 6Câu 64. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Hai hình chóp tứ giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Hai hình chóp tam giác.
Câu 65. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 66. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 2
Câu 67. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√ 6
a3√ 6
a3√ 6
6 .
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 3) B A0(−3; −3; 3) C A0(−3; −3; −3) D A0(−3; 3; 1)
Câu 69. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2
!
2;+∞
!
Câu 70. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 71. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 72. Khối đa diện đều loại {3; 4} có số mặt
Câu 73. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 74. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 75. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 76. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Câu 77. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
√ 3
a
3.
Câu 78. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Trang 7Câu 79. Bát diện đều thuộc loại
Câu 80. Hàm số y= x + 1
x có giá trị cực đại là
Câu 81. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√ 10
Câu 82. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 83. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 84. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng 2n.
B Số mặt của khối chóp bằng 2n+1.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 85. [2] Đạo hàm của hàm số y = x ln x là
A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 − ln x D y0 = 1 + ln x
Câu 86. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 87. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 88. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 89. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 90. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
Trang 8Câu 91. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Năm tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 92. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x3−3mx2+m
nghịch biến trên khoảng (−∞;+∞)
Câu 93. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
3√
6
a3
√ 6
3√
3√ 6
3 .
Câu 94. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 95. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 96. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3
a3√ 3
3√
3√ 3
3 .
Câu 97. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 98 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
C.
Z
k f(x)dx= kZ f(x)dx, k là hằng số D.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
Câu 99. Khối đa diện đều loại {3; 3} có số mặt
Câu 100. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 101. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2+ n + 1
(n+ 1)2 C un = 1 − 2n
5n+ n2 D un = n2− 2
5n − 3n2
Câu 102. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 103. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Trang 9Câu 104. Khối lập phương thuộc loại
Câu 105. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 106. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
Câu 107. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 108. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 109 Phát biểu nào sau đây là sai?
A lim1
nk = 0
Câu 110. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
√
1
n+ 1
n .
Câu 111. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 112. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 113. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 114 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D Cả ba đáp án trên.
Câu 115. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 8
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Trang 10Câu 116. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 117. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 3 C T = 4 + 2
e. D T = e + 1
Câu 118. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2016
2017. C T = 2016 D T = 2017
Câu 119. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 120. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 3
a3
√ 6
a3
√ 3
48 .
Câu 121. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
3√
3
a3√3
2a3√3
4a3√3
3 .
Câu 122. Tứ diện đều thuộc loại
Câu 123. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 2x ln 2 C y0 = 2x ln x D y0 = 1
2x ln x.
Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 125 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aαβ = (aα)β C aαbα = (ab)α D aα+β = aα.aβ
Câu 126. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3
√ 3
3√ 3
3 .
Câu 128. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.