TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [4 1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z−[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 68
Câu 2. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 3. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
2a3√3
a3
6 .
Câu 4. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
16 .
Câu 5. [3] Cho hình lập phương ABCD.A0B0C0D0có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C0D) bằng
A a
√
√ 3
2a√3
a√3
3 .
Câu 6. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 7. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
2 .
Câu 8. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 9. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 10. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 11. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2
!
2;+∞
!
Trang 2Câu 12. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 13. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 14 Phát biểu nào sau đây là sai?
A lim √1
C lim un= c (Với un = c là hằng số) D lim 1
nk = 0 với k > 1
Câu 15. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
√ 3
a
2.
Câu 16. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 2a
3√
6
a3√6
4a3√6
3√ 6
Câu 17. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 18. Hàm số f có nguyên hàm trên K nếu
Câu 19. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 20. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 21. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 22. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 23. Hàm số y= x + 1
x có giá trị cực đại là
Câu 24. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
4 .
Câu 25. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 26. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.
Trang 3Câu 27. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 28. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 29. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1637
1728
23
1079
4913.
Câu 30. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.
Câu 31. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 32. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
A P= −1+ i
√ 3
√ 3
2 . D P= 2
Câu 33. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
9
23
13
100.
Câu 34. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 35. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 36. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
a3
a3
√ 3
12 .
Câu 37. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 38. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 39. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 40. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
3.
Trang 4Câu 41. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
3.
Câu 42. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
Câu 43. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√
Câu 44. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 45. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x3−3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Câu 46. Tính lim
x→3
x2− 9
x −3
Câu 47. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A m > −5
5
4 < m < 0 D m ≥ 0.
Câu 48. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 49. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√ 2
Câu 50. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3
√ 2
a3
√ 6
a3
√ 6
18 .
Câu 51. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 52. Khối đa diện đều loại {3; 3} có số cạnh
Câu 53. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
a3
√ 3
a3
3
Câu 54. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e−2+ 2; m = 1
C M = e2
− 2; m = e−2+ 2 D M = e−2
− 2; m= 1
Trang 5Câu 55. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 56. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 57. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 58. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 59. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 60. [1] Giá trị của biểu thức 9log3 12bằng
Câu 61. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x
2 = y −2
3 = z −3
−1 .
C. x −2
2 = y+ 2
2 = z −3
x
1 = y
1 = z −1
1 .
Câu 62. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 63. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 1
√ 3
3
Câu 64. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.
Câu 65. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 66. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 67. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
Trang 6Câu 68. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3
2a3
2a3
√ 3
4a3
√ 3
3 .
Câu 69 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
C.
Z
k f(x)dx= kZ f(x)dx, k là hằng số D.
Z
f(x)dx
!0
= f (x)
Câu 70. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Hai hình chóp tam giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 71. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 72. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 73. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Câu 74. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11+ 19
9 . B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11 − 19
9 . D Pmin= 18
√
11 − 29
21 .
Câu 75. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
2
1
2.
Câu 76. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 77. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; −3; 3) B A0(−3; 3; 1) C A0(−3; 3; 3) D A0(−3; −3; −3)
Câu 78. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√2
a3√3
4 .
Trang 7Câu 79 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 80. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
a√57
a√57
√ 57
Câu 81. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là −1.
Câu 82. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
3 triệu.
C m = (1, 01)3
(1, 01)3− 1 triệu. D m = 120.(1, 12)3
(1, 12)3− 1 triệu.
Câu 83. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 4 ln 2x 2x3ln 10 .
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 85. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Câu 86. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R \ {1; 2} B. D = [2; 1] C. D = R D. D = (−2; 1)
Câu 87. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 88. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
xln 10. C y
0 = 1
1
10 ln x.
Câu 89. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trang 8Câu 90. Tìm m để hàm số y= x3
− 3mx2+ 3m2
có 2 điểm cực trị
Câu 91. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
Câu 92 Hình nào trong các hình sau đây không là khối đa diện?
Câu 93. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3
a3√ 3
a3√ 3
3 .
Câu 94. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 95. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 96. Tứ diện đều thuộc loại
Câu 97. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logaxtrong đó a= √3 − 2 B y = log1 x
C y = log√
4 x
Câu 98. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 99. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 100. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 101. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
a
√ 6
√ 6
Câu 102. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
8
1
3.
Câu 103. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 104. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 105. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 2 .
Trang 9Câu 106. [4] Xét hàm số f (t) = 9
9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S
Câu 107. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
2.
Câu 108. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ 1
2√a2+ b2 D. √ ab
a2+ b2
Câu 109 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 110. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 111 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Câu 112. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
C (x − 3)2+ (y − 1)2+ (z − 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
Câu 113. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 114. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 115. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
Câu 116. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= loga2 C log2a= − loga2 D log2a= 1
loga2.
Trang 10Câu 117. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 118. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
5a
a
8a
9 .
Câu 119. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 120. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A 2a
√
√ 6
√
√ 6
Câu 121. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
9
2.
Câu 122. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
6 .
Câu 123. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 124. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√
√ 2
a√2
3 .
Câu 125. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
Câu 126. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
a3√3
a3√6
48 .
Câu 128. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 129. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x