1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 4 (24)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 4 (24)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,2 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a,[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a√2

a

3.

Câu 2. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 3. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 4. [4] Xét hàm số f (t) = 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 5. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 6. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số cạnh của khối chóp bằng 2n.

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng 2n+ 1

Câu 7. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là −

2 − 1, phần ảo là

√ 3

Câu 8. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 9. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 10. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 11 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 12. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

1

√ 3

2 .

Câu 13 Phát biểu nào sau đây là sai?

nk = 0

Trang 2

C lim1

Câu 14. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 15. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 16. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số đồng biến trên khoảng (1; 2).

Câu 17. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 18. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= 10 C f0(0)= 1

ln 10. D f

0 (0)= ln 10

Câu 19. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 21. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 22. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 23. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 24. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 25. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 26 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D Cả ba đáp án trên.

Câu 27. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

Trang 3

Câu 28. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C Cả ba câu trên đều sai.

D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Câu 29. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

8

1

1

9.

Câu 30. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 31. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

5a3√3

2a3√3

4a3√3

3 .

Câu 32. Dãy số nào sau đây có giới hạn khác 0?

A. √1

n+ 1

sin n

1

n.

Câu 33. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 34. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Câu 35. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

Câu 36. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 37. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = (0; +∞) C. D = R D. D = R \ {1}

Câu 38 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 20 triệu đồng.

Trang 4

Câu 39. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 40. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

√ 57

a√57

17 .

Câu 41. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 42. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√ 2

a3√ 3

6 .

Câu 44. Tính lim

x→3

x2− 9

x −3

Câu 45. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 46. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 47. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 48. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

13 .

Câu 49. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

3 C V = a3

√ 3

2 . D V = 3a3

√ 3

2 .

Câu 50. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 51. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

Trang 5

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.

sai

C Câu (III) sai D Câu (I) sai.

Câu 52. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 53. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 54. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 55. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

8a3√3

a3√3

4a3√3

9 .

Câu 57. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 58. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 59. Khối đa diện đều loại {5; 3} có số cạnh

Câu 60. Tính lim n −1

n2+ 2

Câu 61. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 62. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3√6

a3√6

a3√3

4 .

Câu 63. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 64. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 65. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Trang 6

Câu 66. [2] Phương trình logx4 log2 5 − 12x

12x − 8 = 2 có bao nhiêu nghiệm thực?

Câu 67. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 68. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 69. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y+ 2

2 = z −3

x −2

2 = y −2

3 = z −3

4 .

C. x

2 = y −2

3 = z −3

x

1 = y

1 = z −1

1 .

Câu 70. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 71. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 72. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 73. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 74. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 75. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 2

3.

Câu 76. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 77. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 78 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Trang 7

Câu 79. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 80. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

Câu 81. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 82. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = ey

− 1

Câu 83. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 84. Hàm số y= x + 1

x có giá trị cực đại là

Câu 85. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 86. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1 − i

√ 3

2 . C P= −1+ i

√ 3

2 . D P= 2

Câu 87. Khối đa diện đều loại {3; 5} có số cạnh

Câu 88. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 89. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 90. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

6 .

Câu 91. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

2.

Câu 92. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Trang 8

Câu 93. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 94. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 95. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 96. Bát diện đều thuộc loại

Câu 97. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 98 Mệnh đề nào sau đây sai?

A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C.

Z

f(x)dx

!0

= f (x)

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 99. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 100. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 6

a3√ 2

6 .

Câu 101. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 102. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C [1;+∞) D (−∞; 1].

Câu 103. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).

Trang 9

Câu 104. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 105. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều sai D Cả hai đều đúng.

Câu 106. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 1

e. C M = e, m = 0 D M = 1

e, m = 0

Câu 107. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

√ 34

Câu 108. Khối đa diện đều loại {3; 5} có số mặt

Câu 109. Tìm giới hạn lim2n+ 1

n+ 1

Câu 110. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

3

√ 3

2 .

Câu 111. Khối đa diện đều loại {4; 3} có số cạnh

Câu 112. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 113. Khối đa diện đều loại {5; 3} có số mặt

Câu 114. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (3; 4; −4) C ~u= (2; 1; 6) D ~u= (2; 2; −1)

Câu 115. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 116. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Trang 10

Câu 117. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 118. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 119. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 120. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ 1

a2+ b2

Câu 121. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 122. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 123. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

3.

Câu 124. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1 − 2e

4e+ 2.

Câu 125. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 126. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3

√ 15

a3

√ 15

a3

√ 5

25 .

Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

2 .

Câu 128. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√5

a3√5

a3√5

6 .

Câu 129. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

Câu 130. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là −4 B Phần thực là −3, phần ảo là 4.

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.

HẾT

Ngày đăng: 31/03/2023, 15:47

w