1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 3 (161)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 3 (161)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Biết M(0; 2),N(2;−2) là các điểm cực trị của đồ thị hà[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 2 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Nhị thập diện đều B Thập nhị diện đều C Tứ diện đều D Bát diện đều.

Câu 3. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 4. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 5. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 6. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 7. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 8. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2 B P= −1 − i

√ 3

√ 3

Câu 9. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

12 .

Câu 10. Biểu thức nào sau đây không có nghĩa

Câu 11. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 3

Câu 12. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 13. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = log√

4 x

C y = logaxtrong đó a= √3 − 2 D y = log1 x

Câu 14. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



A (−∞; −1) ∪ (1; +∞) B [0; +∞) C (−∞; 0] ∪ (1;+∞) D (1;+∞)

Trang 2

Câu 15. Tìm giá trị lớn chất của hàm số y= x3

− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 16. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 17. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Hai hình chóp tứ giác.

C Hai hình chóp tam giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 18. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng −∞;1

3

!

Câu 19. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

3

2

Câu 20 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.

Câu 21 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 22. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3

a3

4a3√ 3

3 .

Câu 24. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Trang 3

Câu 25. [3] Cho hàm số f (x)= 4

4x+ 2 Tính tổng T = f

1

2017 + f 2

2017 + · · · + f 2016

2017

A T = 2016 B T = 1008 C T = 2017 D T = 2016

2017.

Câu 26. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 12)3− 1 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 100.1, 03

3 triệu.

Câu 27. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 28. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

5

9

13

100.

Câu 29. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 30. Tính lim

x→3

x2− 9

x −3

Câu 31. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 32 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. D.

Z

dx = x + C, C là hằng số

Câu 33. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a√57

2a√57

√ 57

Câu 34. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 35. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 36. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 37. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Trang 4

Câu 38. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 39. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

18 .

Câu 40. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±1 B m= ±√3 C m= ±√2 D m= ±3

Câu 41. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m < 0 ∨ m = 4 B m < 0 ∨ m > 4 C m ≤ 0 D m < 0.

Câu 42. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

1

1

3.

Câu 43. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.

Câu 44. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 45 Hình nào trong các hình sau đây không là khối đa diện?

Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. abc

b2+ c2

a2+ b2+ c2 C. c

a2+ b2

a2+ b2+ c2 D. a

b2+ c2

a2+ b2+ c2

Câu 47. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A a

√ 2

√ 2

2 .

Câu 48. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 49. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 50. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 51. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

ln 10. C f

0 (0)= 10 D f0(0)= ln 10

Câu 52. Khối đa diện đều loại {3; 4} có số mặt

Trang 5

Câu 53. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3

a3

√ 3

3

Câu 54. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}

Câu 55. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 56. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là −4.

Câu 57. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C (−∞; 1] D [1;+∞)

Câu 58. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 59. Khối đa diện đều loại {3; 5} có số mặt

Câu 60. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 61. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 62. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = 6a3 C V = 3a3√

3 D V = a3

√ 3

2 .

Câu 63. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 65. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

√ 3

a

√ 3

3 .

Câu 66. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

Câu 67. [1] Biết log6 √a= 2 thì log6abằng

Câu 68. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Trang 6

Câu 69. [2] Tập xác định của hàm số y= (x − 1) là

A. D = (−∞; 1) B. D = (1; +∞) C. D = R D. D = R \ {1}

Câu 70. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 71. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 72. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

!

3

# C. " 2

5;+∞

!

5

#

Câu 73. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e +2

e. B T = e + 3 C T = e + 1 D T = 4 + 2

e.

Câu 74. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 75. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 76. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 77. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều đúng D Cả hai đều sai.

Câu 78. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 79. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 13

Câu 80. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√15

a3

a3√15

5 .

Trang 7

Câu 81. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 82. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 83. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 84. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 85. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tứ giác.

Câu 86. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Năm tứ diện đều.

D Năm hình chóp tam giác đều, không có tứ diện đều.

Câu 87. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

Câu 89. Tính lim

x→2

x+ 2

x bằng?

Câu 90. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 2 .

Câu 91. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

Câu 92. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 93. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Trang 8

Câu 94. Tính lim 5

n+ 3

Câu 95. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 96. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là

Câu 97. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 98. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 6

a3

√ 3

a3

√ 6

24 .

Câu 99. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 100. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1 B xy0 = −ey+ 1 C xy0 = ey

− 1 D xy0 = ey+ 1

Câu 101. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 102. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 103. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 104. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

12.

Câu 105. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 106. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 107. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 108. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3√3

a3

4 .

Trang 9

Câu 109. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 110. Khối đa diện đều loại {4; 3} có số mặt

Câu 111. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 112. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 113. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = −2

3

!n C un = 6

5

!n D un = n3− 3n

n+ 1 .

Câu 114. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 115. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. a

3√

6

3√

3√ 6

2a3√6

3 .

Câu 116. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3

Câu 117. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = [2; 1] B. D = R C. D = R \ {1; 2} D. D = (−2; 1)

Câu 118. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 119 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

B aαβ = (aα

C. a

α

aβ = aα D aαbα = (ab)α

Câu 120. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số đồng biến trên khoảng (1; 2).

Câu 121. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 1

2x ln x. C y0 = 2x ln x D y0 = 2x ln 2

Câu 122 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

Trang 10

Câu 123. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3

√ 3

2a3

4a3

3 .

Câu 124. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1+ 2e 4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1 − 2e

4 − 2e.

Câu 125. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 126. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

a

2a

8a

9 .

Câu 127. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 5

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 128. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 3

4 .

Câu 129. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 130. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√2

a3√3

6 .

HẾT

Ngày đăng: 31/03/2023, 15:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN