1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 2 (125)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 12
Dung lượng 152,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Nhị thập diện đều (20 mặt đều) thuộc loại A {4; 3} B {5; 3} C {3; 4} D {3; 5} Câu 2 Giá trị của giới hạn l[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 2. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 3. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 4 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 5. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

13

9

5

16.

Câu 6. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

3.

Câu 7. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 8. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

9

3

4.

Câu 9. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= ln 10 C f0(0)= 10 D f0(0)= 1

ln 10.

Câu 10. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2 B P= −1 − i

√ 3

2 . C P= −1+ i

√ 3

2 . D P= 2i

Câu 11. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 12. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 13. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 14. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

C Phần thực là −1, phần ảo là −4 D Phần thực là −1, phần ảo là 4.

Trang 2

Câu 15. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 16 Hình nào trong các hình sau đây không là khối đa diện?

Câu 17. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 18. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

√ 2

3 .

Câu 19. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

5

# C. " 2

5;+∞

!

"

−2

3;+∞

!

Câu 20. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 21. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 22. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 23. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

3.

Câu 24. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 25. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 26. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 27. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.

Câu 28. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√2

a3√2

a3√2

4 .

Trang 3

Câu 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 30. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3

√ 3

a3

√ 3

a3

√ 3

4 .

Câu 31. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 32. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 33. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 34. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 35. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 2ac

3b+ 3ac

c+ 2 .

Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

a3√ 3

3√ 3

Câu 37. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 38. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 39. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 40. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 41. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 42. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. D V = 3S h

Câu 43. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 44. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Trang 4

Câu 45. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 46. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

√ 3

a

√ 3

2 .

Câu 47. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 48. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 49. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 50. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

1

Câu 51 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 52. Tính giới hạn lim2n+ 1

3n+ 2

3

1

2.

Câu 53. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 54. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 55. Tứ diện đều thuộc loại

Trang 5

Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

3√ 5

a3

√ 15

a3

√ 6

3 .

Câu 57. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a + f(x)= lim

x→a − f(x)= +∞

x→af(x)= f (a)

Câu 58. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 59 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ B. a

α

aβ = aα C aαbα = (ab)α D aαβ = (aα)β

Câu 60. Tính lim

x→1

x3− 1

x −1

Câu 61. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 62. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 4 ln 2x

2x3ln 10 . D y

2x3ln 10.

Câu 63. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 64. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 65. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 66. Khối đa diện đều loại {3; 4} có số cạnh

Câu 67. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3

4a3√3

a3

6 .

Câu 68. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 2; m = 1 B M = e2− 2; m = e−2+ 2

− 2; m= 1

Câu 69. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

2 .

Câu 70. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 71. [1] Tập xác định của hàm số y= log3(2x+ 1) là

2

!

2;+∞

!

2;+∞

!

2

!

Trang 6

Câu 72 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 22 triệu đồng.

Câu 73. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 74. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

√ 34

Câu 75. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 76. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 77. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 78. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 79. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 80. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ 1

2

a2+ b2 D. √ ab

a2+ b2

Câu 82. Thể tích của khối lập phương có cạnh bằng a

√ 2

A 2a3

3√ 2

3 .

Câu 83. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 84. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Trang 7

Câu 85. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

2017

4035

2018.

Câu 86. Khối đa diện đều loại {3; 3} có số cạnh

Câu 87. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 88. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 89. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 90. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 91. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 92. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

Câu 93. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

√ 3

Câu 94. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 96. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 20, 128 triệu đồng.

Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3√2

a3√6

48 .

Trang 8

Câu 98. Khối đa diện đều loại {3; 3} có số mặt

Câu 99. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 100. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 101 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C D.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

Câu 102. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2√ 7

a2√ 2

a2√ 5

16 .

Câu 103. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±3 C m= ±√3 D m= ±1

Câu 104. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 105. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 106. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 6

a3

√ 3

a3

√ 6

8 .

Câu 107. Khối đa diện đều loại {5; 3} có số cạnh

Câu 108. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là

2, phần ảo là −

√ 3

Câu 109. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 110. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

a

a√3

2 .

Trang 9

Câu 111. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số mặt của khối chóp bằng số cạnh của khối chóp.

C Số cạnh của khối chóp bằng 2n.

D Số đỉnh của khối chóp bằng 2n+ 1

Câu 112. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 113. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A.

2 và 3

Câu 114. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 8

8

1

1

3.

Câu 115. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3√ 3

2a3

4a3

3 .

Câu 116. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

Câu 117. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 118. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; −1) và (0; +∞) B (−∞; 0) và (1; +∞) C (−1; 0) D (0; 1).

Câu 119. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 120. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

√ 6

Câu 121 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 122. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 123. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = R \ {1} C. D = (1; +∞) D. D = (−∞; 1)

Câu 124. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Trang 10

Câu 125. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị nhỏ nhất trên K D f (x) liên tục trên K.

Câu 126. Biểu thức nào sau đây không có nghĩa

A (−

Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3

√ 3

4a3

√ 3

8a3

√ 3

9 .

Câu 128. Khối đa diện đều loại {3; 5} có số mặt

Câu 129. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 130. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

HẾT

Ngày đăng: 31/03/2023, 07:46

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN