Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là A [6, 5; +∞) B (4; 6, 5] C (−∞; 6, 5) D (4; +∞) Câu 2 Cho[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
6 .
Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 4. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 5. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 6. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2√ 2
11a2
a2√ 5
16 .
Câu 8. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√ 3
Câu 9. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 10. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2
và y= x
9
Câu 11. Thể tích của khối lập phương có cạnh bằng a
√ 2
A 2a3
√
3√ 2
3 .
Câu 12. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (1;+∞)
Trang 2Câu 13. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 14. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 15. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 2 log 2x
x3
là:
với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3√2
12 .
Câu 19. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 20. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
x→ +∞
2x+ 1
x+ 1
2.
Câu 22. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
1
3.
Câu 23. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
a3√ 6
4a3√ 6
3 .
Câu 24. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.
Câu 25. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 27. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Trang 3Câu 28. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.
Câu 30. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√
Câu 31. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 32. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 33. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 3
2a3
√ 3
3√ 3
Câu 35. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3√ 3
a3
√ 3
a3
3 .
Câu 36. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 37. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 38. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 39. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi.
Câu 40. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
a
2a
3 .
Trang 4Câu 42. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 43. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 44. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 45. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 46. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
√ 13
√ 13
Câu 47. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = R \ {0} C. D = (0; +∞) D. D = R \ {1}
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 49. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 50. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = R C. D = (−∞; 1) D. D = (1; +∞)
Câu 51. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
14√3
3 .
Câu 52. Khối đa diện đều loại {4; 3} có số cạnh
Câu 53. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 54. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
Trang 5A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.
Câu 56. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
ln 10. C f
0 (0)= 10 D f0(0)= ln 10
Câu 57. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 58. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
8 .
Câu 60. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
3√
3
5a3√3
4a3√3
a3√3
2 .
giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
3 .
Câu 62. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 63. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√
Câu 64. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 65. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 66. Khối đa diện đều loại {4; 3} có số mặt
Câu 67. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 68. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Trang 6Câu 70. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
√
√ 2
Câu 71. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 1
2x ln x. C y
0 = 2x ln 2 D y0 = 1
ln 2.
thành
A Hai hình chóp tam giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tứ giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 73. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 74 Hình nào trong các hình sau đây không là khối đa diện?
Câu 75. Tứ diện đều thuộc loại
Câu 76 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
xαdx= α + 1xα+1 + C, C là hằng số D.
Z
dx = x + C, C là hằng số
Câu 77. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
Câu 79 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a√2
√
√ 2
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
√ 3
2 e
π
2e
π
√ 2
2 e
π
4
Câu 82. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e
4 − 2e.
Trang 7Câu 83. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B f (x) có giới hạn hữu hạn khi x → a.
C lim
x→a + f(x)= lim
x→af(x)= f (a)
Câu 84. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
Câu 85. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 86. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 87. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
n+ 3
Câu 89. Khối đa diện đều loại {3; 5} có số cạnh
Câu 90. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 91. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 3 B T = e + 2
e. C T = e + 1 D T = 4 + 2
e.
Câu 92. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
loga2. C log2a= − loga2 D log2a= 1
log2a.
2− 2n3+ 1 3n3+ 2n2+ 1
-2
Câu 94. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
x có giá trị cực đại là
Câu 96. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Trang 8Câu 97. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
3√
6
a3
√ 3
a3
√ 6
a3
√ 3
4 .
Câu 99. Khối đa diện đều loại {3; 5} có số mặt
Câu 100. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Câu 102. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 104. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 105. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 106. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 107 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√ 5
a3
a3√ 15
25 .
P= xy + x + 2y + 17
Trang 9Câu 110. [4] Xét hàm số f (t) = 9
9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S
Câu 111. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 112. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 113. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A. 1
1
Câu 114. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
4 .
x→3
x2− 9
x −3
Câu 116. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 3
6 . C V = πa3
√ 6
6 . D V = πa3
√ 3
2 .
Câu 117. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
A y = x3− 3x B y= x4− 2x+ 1 C y= x −2
2x+ 1. D y= x +
1
x.
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 121. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
3
2
3.
Câu 122. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
4 .
Trang 10Câu 123. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 124. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
16 .
Câu 125. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 126. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 128. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 129. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
3√
3
a3
√ 3
8a3
√ 3
8a3
√ 3
9 .
HẾT