1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt cao1 (459)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt cao1
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Đạo hàm của hàm số y = 2x là A y′ = 1 ln 2 B y′ = 2x l[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 2x ln 2 C y0 = 2x ln x D y0 = 1

2x ln x.

Câu 2. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 3. Khối đa diện đều loại {3; 5} có số cạnh

Câu 4. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 5 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 5

a3√ 5

a3√ 5

6 .

Câu 7. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 8. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 9. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

9.

Câu 10. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

3√

3√ 15

a3

√ 5

3 .

Câu 11. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 1

1

9

2

5.

Câu 12. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Trang 2

Câu 13. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 14. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

2a3√ 6

a3

√ 6

12 .

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

C (x − 3)2+ (y + 1)2+ (z + 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 16. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 17. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 18. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 19. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 20. [1] Đạo hàm của làm số y = log x là

0 = 1

xln 10. C y

0 = 1

0 = ln 10

x .

Câu 21. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 2; −1) B ~u= (2; 1; 6) C ~u= (1; 0; 2) D ~u= (3; 4; −4)

Câu 22. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 5

Câu 23. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 24. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Hai hình chóp tứ giác.

Trang 3

Câu 25. Khối đa diện đều loại {4; 3} có số mặt

Câu 26. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√6

a√3

2 .

Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

3√

3

a3

√ 3

3√

3√ 3

6 .

Câu 28. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A. 3

√ 3

√ 3

√ 3

4 .

Câu 29. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 30. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 31. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Câu 33. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 34 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 35. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 36. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 37. Khối lập phương thuộc loại

Câu 38. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

Trang 4

C Số đỉnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 39. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 40. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1+ 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e

4 − 2e.

Câu 41. Tính lim

x→3

x2− 9

x −3

Câu 42. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 43. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 44. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 45. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3

√ 3

2 . C V = 3a3√

3 D V = 6a3

Câu 46. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

3√

3

5a3√ 3

a3√ 3

4a3√ 3

3 .

Câu 47. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

57

a√57

a√57

√ 57

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√3

4a3√3

8a3√3

9 .

Câu 49. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√ 2

a3√ 2

a3√ 2

6 .

Câu 50. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 51. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

√ 5

Trang 5

Câu 52. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 53. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 54. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 55. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

a3√ 3

3√ 3

Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√ 3

4a3√ 3

a3

6 .

Câu 57. Khối đa diện đều loại {3; 3} có số mặt

Câu 58. Cho I =

Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 59. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là

Câu 60. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 61. [1] Giá trị của biểu thức 9log3 12bằng

Câu 62. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

23

1728

1637

4913.

Câu 63. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√ 3

a3√ 3

a3√ 3

4 .

Câu 64 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Bát diện đều B Nhị thập diện đều C Thập nhị diện đều D Tứ diện đều.

Câu 65. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√

2

√ 2

Câu 66. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

x→a + f(x)= lim

x→a − f(x)= +∞

C lim

x→a + f(x)= lim

x→af(x)= f (a)

Trang 6

Câu 67. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 68. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 69. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

Câu 70. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2;+∞

!

2

!

2;+∞

!

Câu 71. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 72. Tính lim 2n

2− 1 3n6+ n4

Câu 73. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√

6

4a3

√ 6

a3

√ 6

3√ 6

Câu 74. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 75 Hình nào trong các hình sau đây không là khối đa diện?

Câu 76. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2017

Câu 77. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 79. [1-c] Giá trị biểu thức log236 − log2144 bằng

Trang 7

Câu 80. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2a

a√2

a

4.

Câu 81. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng 2n+1.

D Số cạnh của khối chóp bằng 2n.

Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 83. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 84 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 85. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 86. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 87. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 0

2.

Câu 88. [1] Tập xác định của hàm số y= 2x−1

A. D = R B. D = R \ {1} C. D = R \ {0} D. D = (0; +∞)

Câu 89. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị nhỏ nhất trên K D f (x) liên tục trên K.

Câu 90. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= 1

log2a. C log2a= loga2 D log2a= 1

loga2.

Câu 91. Tính lim

x→ +∞

x −2

x+ 3

3.

Trang 8

Câu 92 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

f(x)dx

!0

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

Câu 93. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 94. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 95. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 96. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

2

3.

Câu 97. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 98. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 99. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Câu 100 Phát biểu nào sau đây là sai?

A lim un= c (un = c là hằng số) B lim qn= 0 (|q| > 1)

C lim1

nk = 0

Câu 101. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 102. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 103. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 104. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

3

√ 3

2 .

Câu 105. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Trang 9

Câu 106. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 107. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 108. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 109. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 3) B A0(−3; −3; −3) C A0(−3; 3; 1) D A0(−3; −3; 3)

Câu 110. Khối đa diện đều loại {3; 4} có số mặt

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 112. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 113. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

2.

Câu 114. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 115. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 116. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 117. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3có tất cả bao nhiêu nghiệm?

Câu 118. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 119. Khối đa diện đều loại {3; 3} có số cạnh

Câu 120. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Trang 10

Câu 121. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 122. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= e, m = 0 C M = e, m = 1 D M = 1

e, m = 0

Câu 123. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 124. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 125. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 126. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

2S h. D V = 1

3S h.

Câu 127. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

"

−2

3;+∞

!

5

# D. " 2

5;+∞

!

Câu 128. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 3n

n2 D un = n2− 2

5n − 3n2

Câu 129. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 130. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

HẾT

Ngày đăng: 30/03/2023, 23:02

w